ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwsinvg Unicode version

Theorem pwsinvg 13631
Description: Negation in a group power. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsgrp.y  |-  Y  =  ( R  ^s  I )
pwsinvg.b  |-  B  =  ( Base `  Y
)
pwsinvg.m  |-  M  =  ( invg `  R )
pwsinvg.n  |-  N  =  ( invg `  Y )
Assertion
Ref Expression
pwsinvg  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  ( N `  X
)  =  ( M  o.  X ) )

Proof of Theorem pwsinvg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . . 4  |-  ( (Scalar `  R ) X_s ( I  X.  { R } ) )  =  ( (Scalar `  R
) X_s ( I  X.  { R } ) )
2 simp2 1022 . . . 4  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  I  e.  V )
3 scaslid 13172 . . . . . 6  |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
43slotex 13045 . . . . 5  |-  ( R  e.  Grp  ->  (Scalar `  R )  e.  _V )
543ad2ant1 1042 . . . 4  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  (Scalar `  R )  e.  _V )
6 fconst6g 5520 . . . . 5  |-  ( R  e.  Grp  ->  (
I  X.  { R } ) : I --> Grp )
763ad2ant1 1042 . . . 4  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  ( I  X.  { R } ) : I --> Grp )
8 eqid 2229 . . . 4  |-  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) )  =  ( Base `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) )
9 eqid 2229 . . . 4  |-  ( invg `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )  =  ( invg `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) )
10 simp3 1023 . . . . 5  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  X  e.  B )
11 pwsinvg.b . . . . . 6  |-  B  =  ( Base `  Y
)
12 pwsgrp.y . . . . . . . . 9  |-  Y  =  ( R  ^s  I )
13 eqid 2229 . . . . . . . . 9  |-  (Scalar `  R )  =  (Scalar `  R )
1412, 13pwsval 13310 . . . . . . . 8  |-  ( ( R  e.  Grp  /\  I  e.  V )  ->  Y  =  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )
15143adant3 1041 . . . . . . 7  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  Y  =  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )
1615fveq2d 5627 . . . . . 6  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  ( Base `  Y
)  =  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
1711, 16eqtrid 2274 . . . . 5  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  B  =  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
1810, 17eleqtrd 2308 . . . 4  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  X  e.  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
191, 2, 5, 7, 8, 9, 18prdsinvgd 13629 . . 3  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  ( ( invg `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) `
 X )  =  ( x  e.  I  |->  ( ( invg `  ( ( I  X.  { R } ) `  x ) ) `  ( X `  x ) ) ) )
20 simp1 1021 . . . . . . . 8  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  R  e.  Grp )
21 fvconst2g 5846 . . . . . . . 8  |-  ( ( R  e.  Grp  /\  x  e.  I )  ->  ( ( I  X.  { R } ) `  x )  =  R )
2220, 21sylan 283 . . . . . . 7  |-  ( ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  /\  x  e.  I
)  ->  ( (
I  X.  { R } ) `  x
)  =  R )
2322fveq2d 5627 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  /\  x  e.  I
)  ->  ( invg `  ( (
I  X.  { R } ) `  x
) )  =  ( invg `  R
) )
24 pwsinvg.m . . . . . 6  |-  M  =  ( invg `  R )
2523, 24eqtr4di 2280 . . . . 5  |-  ( ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  /\  x  e.  I
)  ->  ( invg `  ( (
I  X.  { R } ) `  x
) )  =  M )
2625fveq1d 5625 . . . 4  |-  ( ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  /\  x  e.  I
)  ->  ( ( invg `  ( ( I  X.  { R } ) `  x
) ) `  ( X `  x )
)  =  ( M `
 ( X `  x ) ) )
2726mpteq2dva 4173 . . 3  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  ( x  e.  I  |->  ( ( invg `  ( ( I  X.  { R } ) `  x ) ) `  ( X `  x ) ) )  =  ( x  e.  I  |->  ( M `  ( X `
 x ) ) ) )
2819, 27eqtrd 2262 . 2  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  ( ( invg `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) `
 X )  =  ( x  e.  I  |->  ( M `  ( X `  x )
) ) )
29 pwsinvg.n . . . 4  |-  N  =  ( invg `  Y )
3015fveq2d 5627 . . . 4  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  ( invg `  Y )  =  ( invg `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) ) )
3129, 30eqtrid 2274 . . 3  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  N  =  ( invg `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) )
3231fveq1d 5625 . 2  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  ( N `  X
)  =  ( ( invg `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) ) `
 X ) )
33 eqid 2229 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
3412, 33, 11, 20, 2, 10pwselbas 13313 . . . 4  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  X : I --> ( Base `  R ) )
3534ffvelcdmda 5763 . . 3  |-  ( ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  /\  x  e.  I
)  ->  ( X `  x )  e.  (
Base `  R )
)
3634feqmptd 5680 . . 3  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  X  =  ( x  e.  I  |->  ( X `
 x ) ) )
3733, 24grpinvf 13566 . . . . 5  |-  ( R  e.  Grp  ->  M : ( Base `  R
) --> ( Base `  R
) )
38373ad2ant1 1042 . . . 4  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  M : ( Base `  R ) --> ( Base `  R ) )
3938feqmptd 5680 . . 3  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  M  =  ( y  e.  ( Base `  R
)  |->  ( M `  y ) ) )
40 fveq2 5623 . . 3  |-  ( y  =  ( X `  x )  ->  ( M `  y )  =  ( M `  ( X `  x ) ) )
4135, 36, 39, 40fmptco 5794 . 2  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  ( M  o.  X
)  =  ( x  e.  I  |->  ( M `
 ( X `  x ) ) ) )
4228, 32, 413eqtr4d 2272 1  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  ( N `  X
)  =  ( M  o.  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   _Vcvv 2799   {csn 3666    |-> cmpt 4144    X. cxp 4714    o. ccom 4720   -->wf 5310   ` cfv 5314  (class class class)co 5994   Basecbs 13018  Scalarcsca 13099   X_scprds 13284    ^s cpws 13285   Grpcgrp 13519   invgcminusg 13520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-map 6787  df-ixp 6836  df-sup 7139  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-7 9162  df-8 9163  df-9 9164  df-n0 9358  df-z 9435  df-dec 9567  df-uz 9711  df-fz 10193  df-struct 13020  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-mulr 13110  df-sca 13112  df-vsca 13113  df-ip 13114  df-tset 13115  df-ple 13116  df-ds 13118  df-hom 13120  df-cco 13121  df-rest 13260  df-topn 13261  df-0g 13277  df-topgen 13279  df-pt 13280  df-prds 13286  df-pws 13309  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-grp 13522  df-minusg 13523
This theorem is referenced by:  pwssub  13632
  Copyright terms: Public domain W3C validator