| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvf | GIF version | ||
| Description: The group inversion operation is a function on the base set. (Contributed by Mario Carneiro, 4-May-2015.) |
| Ref | Expression |
|---|---|
| grpinvcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvcl.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvf | ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2229 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | eqid 2229 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 4 | grpinvcl.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
| 5 | 1, 2, 3, 4 | grpinvfvalg 13583 | . 2 ⊢ (𝐺 ∈ Grp → 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)))) |
| 6 | 1, 2, 3 | grpinveu 13579 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) |
| 7 | riotacl 5976 | . . 3 ⊢ (∃!𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺) → (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ 𝐵) | |
| 8 | 6, 7 | syl 14 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ 𝐵) |
| 9 | 5, 8 | fmpt3d 5793 | 1 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∃!wreu 2510 ⟶wf 5314 ‘cfv 5318 ℩crio 5959 (class class class)co 6007 Basecbs 13040 +gcplusg 13118 0gc0g 13297 Grpcgrp 13541 invgcminusg 13542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-inn 9119 df-2 9177 df-ndx 13043 df-slot 13044 df-base 13046 df-plusg 13131 df-0g 13299 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-grp 13544 df-minusg 13545 |
| This theorem is referenced by: grpinvcl 13589 isgrpinv 13595 grpinvcnv 13609 grpinvf1o 13611 grp1inv 13648 pwsinvg 13653 pwssub 13654 invghm 13874 |
| Copyright terms: Public domain | W3C validator |