ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwssub Unicode version

Theorem pwssub 13315
Description: Subtraction in a group power. (Contributed by Mario Carneiro, 12-Jan-2015.)
Hypotheses
Ref Expression
pwsgrp.y  |-  Y  =  ( R  ^s  I )
pwsinvg.b  |-  B  =  ( Base `  Y
)
pwssub.m  |-  M  =  ( -g `  R
)
pwssub.n  |-  .-  =  ( -g `  Y )
Assertion
Ref Expression
pwssub  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( F  .-  G
)  =  ( F  oF M G ) )

Proof of Theorem pwssub
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 528 . . . 4  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  ->  I  e.  V )
2 pwsgrp.y . . . . . 6  |-  Y  =  ( R  ^s  I )
3 eqid 2196 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
4 pwsinvg.b . . . . . 6  |-  B  =  ( Base `  Y
)
5 simpll 527 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  ->  R  e.  Grp )
6 simprl 529 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  ->  F  e.  B )
72, 3, 4, 5, 1, 6pwselbas 12996 . . . . 5  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  ->  F : I --> ( Base `  R ) )
87ffvelcdmda 5700 . . . 4  |-  ( ( ( ( R  e. 
Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B )
)  /\  x  e.  I )  ->  ( F `  x )  e.  ( Base `  R
) )
9 eqid 2196 . . . . . . . 8  |-  ( invg `  R )  =  ( invg `  R )
103, 9grpinvf 13249 . . . . . . 7  |-  ( R  e.  Grp  ->  ( invg `  R ) : ( Base `  R
) --> ( Base `  R
) )
1110ad2antrr 488 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( invg `  R ) : (
Base `  R ) --> ( Base `  R )
)
1211adantr 276 . . . . 5  |-  ( ( ( ( R  e. 
Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B )
)  /\  x  e.  I )  ->  ( invg `  R ) : ( Base `  R
) --> ( Base `  R
) )
13 simprr 531 . . . . . . 7  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  ->  G  e.  B )
142, 3, 4, 5, 1, 13pwselbas 12996 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  ->  G : I --> ( Base `  R ) )
1514ffvelcdmda 5700 . . . . 5  |-  ( ( ( ( R  e. 
Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B )
)  /\  x  e.  I )  ->  ( G `  x )  e.  ( Base `  R
) )
1612, 15ffvelcdmd 5701 . . . 4  |-  ( ( ( ( R  e. 
Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B )
)  /\  x  e.  I )  ->  (
( invg `  R ) `  ( G `  x )
)  e.  ( Base `  R ) )
177feqmptd 5617 . . . 4  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  ->  F  =  ( x  e.  I  |->  ( F `
 x ) ) )
18 eqid 2196 . . . . . . 7  |-  ( invg `  Y )  =  ( invg `  Y )
192, 4, 9, 18pwsinvg 13314 . . . . . 6  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  G  e.  B )  ->  ( ( invg `  Y ) `  G
)  =  ( ( invg `  R
)  o.  G ) )
205, 1, 13, 19syl3anc 1249 . . . . 5  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( ( invg `  Y ) `  G
)  =  ( ( invg `  R
)  o.  G ) )
2114feqmptd 5617 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  ->  G  =  ( x  e.  I  |->  ( G `
 x ) ) )
2211feqmptd 5617 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( invg `  R )  =  ( y  e.  ( Base `  R )  |->  ( ( invg `  R
) `  y )
) )
23 fveq2 5561 . . . . . 6  |-  ( y  =  ( G `  x )  ->  (
( invg `  R ) `  y
)  =  ( ( invg `  R
) `  ( G `  x ) ) )
2415, 21, 22, 23fmptco 5731 . . . . 5  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( ( invg `  R )  o.  G
)  =  ( x  e.  I  |->  ( ( invg `  R
) `  ( G `  x ) ) ) )
2520, 24eqtrd 2229 . . . 4  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( ( invg `  Y ) `  G
)  =  ( x  e.  I  |->  ( ( invg `  R
) `  ( G `  x ) ) ) )
261, 8, 16, 17, 25offval2 6155 . . 3  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( F  oF ( +g  `  R
) ( ( invg `  Y ) `
 G ) )  =  ( x  e.  I  |->  ( ( F `
 x ) ( +g  `  R ) ( ( invg `  R ) `  ( G `  x )
) ) ) )
272pwsgrp 13313 . . . . 5  |-  ( ( R  e.  Grp  /\  I  e.  V )  ->  Y  e.  Grp )
284, 18grpinvcl 13250 . . . . 5  |-  ( ( Y  e.  Grp  /\  G  e.  B )  ->  ( ( invg `  Y ) `  G
)  e.  B )
2927, 13, 28syl2an2r 595 . . . 4  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( ( invg `  Y ) `  G
)  e.  B )
30 eqid 2196 . . . 4  |-  ( +g  `  R )  =  ( +g  `  R )
31 eqid 2196 . . . 4  |-  ( +g  `  Y )  =  ( +g  `  Y )
322, 4, 5, 1, 6, 29, 30, 31pwsplusgval 12997 . . 3  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( F ( +g  `  Y ) ( ( invg `  Y
) `  G )
)  =  ( F  oF ( +g  `  R ) ( ( invg `  Y
) `  G )
) )
33 pwssub.m . . . . . 6  |-  M  =  ( -g `  R
)
343, 30, 9, 33grpsubval 13248 . . . . 5  |-  ( ( ( F `  x
)  e.  ( Base `  R )  /\  ( G `  x )  e.  ( Base `  R
) )  ->  (
( F `  x
) M ( G `
 x ) )  =  ( ( F `
 x ) ( +g  `  R ) ( ( invg `  R ) `  ( G `  x )
) ) )
358, 15, 34syl2anc 411 . . . 4  |-  ( ( ( ( R  e. 
Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B )
)  /\  x  e.  I )  ->  (
( F `  x
) M ( G `
 x ) )  =  ( ( F `
 x ) ( +g  `  R ) ( ( invg `  R ) `  ( G `  x )
) ) )
3635mpteq2dva 4124 . . 3  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( x  e.  I  |->  ( ( F `  x ) M ( G `  x ) ) )  =  ( x  e.  I  |->  ( ( F `  x
) ( +g  `  R
) ( ( invg `  R ) `
 ( G `  x ) ) ) ) )
3726, 32, 363eqtr4d 2239 . 2  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( F ( +g  `  Y ) ( ( invg `  Y
) `  G )
)  =  ( x  e.  I  |->  ( ( F `  x ) M ( G `  x ) ) ) )
38 pwssub.n . . . 4  |-  .-  =  ( -g `  Y )
394, 31, 18, 38grpsubval 13248 . . 3  |-  ( ( F  e.  B  /\  G  e.  B )  ->  ( F  .-  G
)  =  ( F ( +g  `  Y
) ( ( invg `  Y ) `
 G ) ) )
4039adantl 277 . 2  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( F  .-  G
)  =  ( F ( +g  `  Y
) ( ( invg `  Y ) `
 G ) ) )
411, 8, 15, 17, 21offval2 6155 . 2  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( F  oF M G )  =  ( x  e.  I  |->  ( ( F `  x ) M ( G `  x ) ) ) )
4237, 40, 413eqtr4d 2239 1  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( F  .-  G
)  =  ( F  oF M G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    |-> cmpt 4095    o. ccom 4668   -->wf 5255   ` cfv 5259  (class class class)co 5925    oFcof 6137   Basecbs 12703   +g cplusg 12780    ^s cpws 12968   Grpcgrp 13202   invgcminusg 13203   -gcsg 13204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-map 6718  df-ixp 6767  df-sup 7059  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-dec 9475  df-uz 9619  df-fz 10101  df-struct 12705  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mulr 12794  df-sca 12796  df-vsca 12797  df-ip 12798  df-tset 12799  df-ple 12800  df-ds 12802  df-hom 12804  df-cco 12805  df-rest 12943  df-topn 12944  df-0g 12960  df-topgen 12962  df-pt 12963  df-prds 12969  df-pws 12992  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-sbg 13207
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator