ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwssub Unicode version

Theorem pwssub 13654
Description: Subtraction in a group power. (Contributed by Mario Carneiro, 12-Jan-2015.)
Hypotheses
Ref Expression
pwsgrp.y  |-  Y  =  ( R  ^s  I )
pwsinvg.b  |-  B  =  ( Base `  Y
)
pwssub.m  |-  M  =  ( -g `  R
)
pwssub.n  |-  .-  =  ( -g `  Y )
Assertion
Ref Expression
pwssub  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( F  .-  G
)  =  ( F  oF M G ) )

Proof of Theorem pwssub
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 528 . . . 4  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  ->  I  e.  V )
2 pwsgrp.y . . . . . 6  |-  Y  =  ( R  ^s  I )
3 eqid 2229 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
4 pwsinvg.b . . . . . 6  |-  B  =  ( Base `  Y
)
5 simpll 527 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  ->  R  e.  Grp )
6 simprl 529 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  ->  F  e.  B )
72, 3, 4, 5, 1, 6pwselbas 13335 . . . . 5  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  ->  F : I --> ( Base `  R ) )
87ffvelcdmda 5772 . . . 4  |-  ( ( ( ( R  e. 
Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B )
)  /\  x  e.  I )  ->  ( F `  x )  e.  ( Base `  R
) )
9 eqid 2229 . . . . . . . 8  |-  ( invg `  R )  =  ( invg `  R )
103, 9grpinvf 13588 . . . . . . 7  |-  ( R  e.  Grp  ->  ( invg `  R ) : ( Base `  R
) --> ( Base `  R
) )
1110ad2antrr 488 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( invg `  R ) : (
Base `  R ) --> ( Base `  R )
)
1211adantr 276 . . . . 5  |-  ( ( ( ( R  e. 
Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B )
)  /\  x  e.  I )  ->  ( invg `  R ) : ( Base `  R
) --> ( Base `  R
) )
13 simprr 531 . . . . . . 7  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  ->  G  e.  B )
142, 3, 4, 5, 1, 13pwselbas 13335 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  ->  G : I --> ( Base `  R ) )
1514ffvelcdmda 5772 . . . . 5  |-  ( ( ( ( R  e. 
Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B )
)  /\  x  e.  I )  ->  ( G `  x )  e.  ( Base `  R
) )
1612, 15ffvelcdmd 5773 . . . 4  |-  ( ( ( ( R  e. 
Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B )
)  /\  x  e.  I )  ->  (
( invg `  R ) `  ( G `  x )
)  e.  ( Base `  R ) )
177feqmptd 5689 . . . 4  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  ->  F  =  ( x  e.  I  |->  ( F `
 x ) ) )
18 eqid 2229 . . . . . . 7  |-  ( invg `  Y )  =  ( invg `  Y )
192, 4, 9, 18pwsinvg 13653 . . . . . 6  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  G  e.  B )  ->  ( ( invg `  Y ) `  G
)  =  ( ( invg `  R
)  o.  G ) )
205, 1, 13, 19syl3anc 1271 . . . . 5  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( ( invg `  Y ) `  G
)  =  ( ( invg `  R
)  o.  G ) )
2114feqmptd 5689 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  ->  G  =  ( x  e.  I  |->  ( G `
 x ) ) )
2211feqmptd 5689 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( invg `  R )  =  ( y  e.  ( Base `  R )  |->  ( ( invg `  R
) `  y )
) )
23 fveq2 5629 . . . . . 6  |-  ( y  =  ( G `  x )  ->  (
( invg `  R ) `  y
)  =  ( ( invg `  R
) `  ( G `  x ) ) )
2415, 21, 22, 23fmptco 5803 . . . . 5  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( ( invg `  R )  o.  G
)  =  ( x  e.  I  |->  ( ( invg `  R
) `  ( G `  x ) ) ) )
2520, 24eqtrd 2262 . . . 4  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( ( invg `  Y ) `  G
)  =  ( x  e.  I  |->  ( ( invg `  R
) `  ( G `  x ) ) ) )
261, 8, 16, 17, 25offval2 6240 . . 3  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( F  oF ( +g  `  R
) ( ( invg `  Y ) `
 G ) )  =  ( x  e.  I  |->  ( ( F `
 x ) ( +g  `  R ) ( ( invg `  R ) `  ( G `  x )
) ) ) )
272pwsgrp 13652 . . . . 5  |-  ( ( R  e.  Grp  /\  I  e.  V )  ->  Y  e.  Grp )
284, 18grpinvcl 13589 . . . . 5  |-  ( ( Y  e.  Grp  /\  G  e.  B )  ->  ( ( invg `  Y ) `  G
)  e.  B )
2927, 13, 28syl2an2r 597 . . . 4  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( ( invg `  Y ) `  G
)  e.  B )
30 eqid 2229 . . . 4  |-  ( +g  `  R )  =  ( +g  `  R )
31 eqid 2229 . . . 4  |-  ( +g  `  Y )  =  ( +g  `  Y )
322, 4, 5, 1, 6, 29, 30, 31pwsplusgval 13336 . . 3  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( F ( +g  `  Y ) ( ( invg `  Y
) `  G )
)  =  ( F  oF ( +g  `  R ) ( ( invg `  Y
) `  G )
) )
33 pwssub.m . . . . . 6  |-  M  =  ( -g `  R
)
343, 30, 9, 33grpsubval 13587 . . . . 5  |-  ( ( ( F `  x
)  e.  ( Base `  R )  /\  ( G `  x )  e.  ( Base `  R
) )  ->  (
( F `  x
) M ( G `
 x ) )  =  ( ( F `
 x ) ( +g  `  R ) ( ( invg `  R ) `  ( G `  x )
) ) )
358, 15, 34syl2anc 411 . . . 4  |-  ( ( ( ( R  e. 
Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B )
)  /\  x  e.  I )  ->  (
( F `  x
) M ( G `
 x ) )  =  ( ( F `
 x ) ( +g  `  R ) ( ( invg `  R ) `  ( G `  x )
) ) )
3635mpteq2dva 4174 . . 3  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( x  e.  I  |->  ( ( F `  x ) M ( G `  x ) ) )  =  ( x  e.  I  |->  ( ( F `  x
) ( +g  `  R
) ( ( invg `  R ) `
 ( G `  x ) ) ) ) )
3726, 32, 363eqtr4d 2272 . 2  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( F ( +g  `  Y ) ( ( invg `  Y
) `  G )
)  =  ( x  e.  I  |->  ( ( F `  x ) M ( G `  x ) ) ) )
38 pwssub.n . . . 4  |-  .-  =  ( -g `  Y )
394, 31, 18, 38grpsubval 13587 . . 3  |-  ( ( F  e.  B  /\  G  e.  B )  ->  ( F  .-  G
)  =  ( F ( +g  `  Y
) ( ( invg `  Y ) `
 G ) ) )
4039adantl 277 . 2  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( F  .-  G
)  =  ( F ( +g  `  Y
) ( ( invg `  Y ) `
 G ) ) )
411, 8, 15, 17, 21offval2 6240 . 2  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( F  oF M G )  =  ( x  e.  I  |->  ( ( F `  x ) M ( G `  x ) ) ) )
4237, 40, 413eqtr4d 2272 1  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( F  .-  G
)  =  ( F  oF M G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    |-> cmpt 4145    o. ccom 4723   -->wf 5314   ` cfv 5318  (class class class)co 6007    oFcof 6222   Basecbs 13040   +g cplusg 13118    ^s cpws 13307   Grpcgrp 13541   invgcminusg 13542   -gcsg 13543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-of 6224  df-1st 6292  df-2nd 6293  df-map 6805  df-ixp 6854  df-sup 7159  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-z 9455  df-dec 9587  df-uz 9731  df-fz 10213  df-struct 13042  df-ndx 13043  df-slot 13044  df-base 13046  df-plusg 13131  df-mulr 13132  df-sca 13134  df-vsca 13135  df-ip 13136  df-tset 13137  df-ple 13138  df-ds 13140  df-hom 13142  df-cco 13143  df-rest 13282  df-topn 13283  df-0g 13299  df-topgen 13301  df-pt 13302  df-prds 13308  df-pws 13331  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545  df-sbg 13546
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator