ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aprsym Unicode version

Theorem aprsym 14046
Description: The apartness relation given by df-apr 14043 for a ring is symmetric. (Contributed by Jim Kingdon, 17-Feb-2025.)
Hypotheses
Ref Expression
aprirr.b  |-  ( ph  ->  B  =  ( Base `  R ) )
aprirr.ap  |-  ( ph  -> #  =  (#r `  R ) )
aprirr.r  |-  ( ph  ->  R  e.  Ring )
aprirr.x  |-  ( ph  ->  X  e.  B )
aprsym.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
aprsym  |-  ( ph  ->  ( X #  Y  ->  Y #  X
) )

Proof of Theorem aprsym
StepHypRef Expression
1 aprirr.r . . . . 5  |-  ( ph  ->  R  e.  Ring )
2 aprirr.b . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  R ) )
3 aprirr.ap . . . . . . 7  |-  ( ph  -> #  =  (#r `  R ) )
4 eqidd 2206 . . . . . . 7  |-  ( ph  ->  ( -g `  R
)  =  ( -g `  R ) )
5 eqidd 2206 . . . . . . 7  |-  ( ph  ->  (Unit `  R )  =  (Unit `  R )
)
6 aprirr.x . . . . . . 7  |-  ( ph  ->  X  e.  B )
7 aprsym.y . . . . . . 7  |-  ( ph  ->  Y  e.  B )
82, 3, 4, 5, 1, 6, 7aprval 14044 . . . . . 6  |-  ( ph  ->  ( X #  Y  <->  ( X
( -g `  R ) Y )  e.  (Unit `  R ) ) )
98biimpa 296 . . . . 5  |-  ( (
ph  /\  X #  Y
)  ->  ( X
( -g `  R ) Y )  e.  (Unit `  R ) )
10 eqid 2205 . . . . . 6  |-  (Unit `  R )  =  (Unit `  R )
11 eqid 2205 . . . . . 6  |-  ( invg `  R )  =  ( invg `  R )
1210, 11unitnegcl 13892 . . . . 5  |-  ( ( R  e.  Ring  /\  ( X ( -g `  R
) Y )  e.  (Unit `  R )
)  ->  ( ( invg `  R ) `
 ( X (
-g `  R ) Y ) )  e.  (Unit `  R )
)
131, 9, 12syl2an2r 595 . . . 4  |-  ( (
ph  /\  X #  Y
)  ->  ( ( invg `  R ) `
 ( X (
-g `  R ) Y ) )  e.  (Unit `  R )
)
141ringgrpd 13767 . . . . . . 7  |-  ( ph  ->  R  e.  Grp )
156, 2eleqtrd 2284 . . . . . . 7  |-  ( ph  ->  X  e.  ( Base `  R ) )
167, 2eleqtrd 2284 . . . . . . 7  |-  ( ph  ->  Y  e.  ( Base `  R ) )
17 eqid 2205 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
18 eqid 2205 . . . . . . . 8  |-  ( -g `  R )  =  (
-g `  R )
1917, 18, 11grpinvsub 13414 . . . . . . 7  |-  ( ( R  e.  Grp  /\  X  e.  ( Base `  R )  /\  Y  e.  ( Base `  R
) )  ->  (
( invg `  R ) `  ( X ( -g `  R
) Y ) )  =  ( Y (
-g `  R ) X ) )
2014, 15, 16, 19syl3anc 1250 . . . . . 6  |-  ( ph  ->  ( ( invg `  R ) `  ( X ( -g `  R
) Y ) )  =  ( Y (
-g `  R ) X ) )
2120eleq1d 2274 . . . . 5  |-  ( ph  ->  ( ( ( invg `  R ) `
 ( X (
-g `  R ) Y ) )  e.  (Unit `  R )  <->  ( Y ( -g `  R
) X )  e.  (Unit `  R )
) )
2221adantr 276 . . . 4  |-  ( (
ph  /\  X #  Y
)  ->  ( (
( invg `  R ) `  ( X ( -g `  R
) Y ) )  e.  (Unit `  R
)  <->  ( Y (
-g `  R ) X )  e.  (Unit `  R ) ) )
2313, 22mpbid 147 . . 3  |-  ( (
ph  /\  X #  Y
)  ->  ( Y
( -g `  R ) X )  e.  (Unit `  R ) )
242, 3, 4, 5, 1, 7, 6aprval 14044 . . . 4  |-  ( ph  ->  ( Y #  X  <->  ( Y
( -g `  R ) X )  e.  (Unit `  R ) ) )
2524adantr 276 . . 3  |-  ( (
ph  /\  X #  Y
)  ->  ( Y #  X  <->  ( Y ( -g `  R
) X )  e.  (Unit `  R )
) )
2623, 25mpbird 167 . 2  |-  ( (
ph  /\  X #  Y
)  ->  Y #  X
)
2726ex 115 1  |-  ( ph  ->  ( X #  Y  ->  Y #  X
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   Basecbs 12832   Grpcgrp 13332   invgcminusg 13333   -gcsg 13334   Ringcrg 13758  Unitcui 13849  #rcapr 14042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-tpos 6331  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-plusg 12922  df-mulr 12923  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-sbg 13337  df-cmn 13622  df-abl 13623  df-mgp 13683  df-ur 13722  df-srg 13726  df-ring 13760  df-oppr 13830  df-dvdsr 13851  df-unit 13852  df-apr 14043
This theorem is referenced by:  aprcotr  14047  aprap  14048
  Copyright terms: Public domain W3C validator