ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  igsumval Unicode version

Theorem igsumval 13222
Description: Expand out the substitutions in df-igsum 13091. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval.b  |-  B  =  ( Base `  G
)
gsumval.z  |-  .0.  =  ( 0g `  G )
gsumval.p  |-  .+  =  ( +g  `  G )
gsumval.g  |-  ( ph  ->  G  e.  V )
gsumval.a  |-  ( ph  ->  A  e.  X )
gsumval.f  |-  ( ph  ->  F : A --> B )
Assertion
Ref Expression
igsumval  |-  ( ph  ->  ( G  gsumg  F )  =  ( iota x ( ( A  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
Distinct variable groups:    x,  .+    x,  .0.    m, F, n, x    m, G, n, x    ph, m, n, x
Allowed substitution hints:    A( x, m, n)    B( x, m, n)    .+ ( m, n)    V( x, m, n)    X( x, m, n)    .0. ( m, n)

Proof of Theorem igsumval
StepHypRef Expression
1 gsumval.b . 2  |-  B  =  ( Base `  G
)
2 gsumval.z . 2  |-  .0.  =  ( 0g `  G )
3 gsumval.p . 2  |-  .+  =  ( +g  `  G )
4 gsumval.g . 2  |-  ( ph  ->  G  e.  V )
5 gsumval.f . . 3  |-  ( ph  ->  F : A --> B )
6 gsumval.a . . 3  |-  ( ph  ->  A  e.  X )
75, 6fexd 5814 . 2  |-  ( ph  ->  F  e.  _V )
85fdmd 5432 . 2  |-  ( ph  ->  dom  F  =  A )
91, 2, 3, 4, 7, 8igsumvalx 13221 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( iota x ( ( A  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373   E.wex 1515    e. wcel 2176   E.wrex 2485   _Vcvv 2772   (/)c0 3460   iotacio 5230   -->wf 5267   ` cfv 5271  (class class class)co 5944   ZZ>=cuz 9648   ...cfz 10130    seqcseq 10592   Basecbs 12832   +g cplusg 12909   0gc0g 13088    gsumg cgsu 13089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-recs 6391  df-frec 6477  df-neg 8246  df-inn 9037  df-z 9373  df-uz 9649  df-seqfrec 10593  df-ndx 12835  df-slot 12836  df-base 12838  df-0g 13090  df-igsum 13091
This theorem is referenced by:  gsumfzval  13223  gsumress  13227  gsum0g  13228  gsumval2  13229
  Copyright terms: Public domain W3C validator