ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  igsumval Unicode version

Theorem igsumval 13418
Description: Expand out the substitutions in df-igsum 13287. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval.b  |-  B  =  ( Base `  G
)
gsumval.z  |-  .0.  =  ( 0g `  G )
gsumval.p  |-  .+  =  ( +g  `  G )
gsumval.g  |-  ( ph  ->  G  e.  V )
gsumval.a  |-  ( ph  ->  A  e.  X )
gsumval.f  |-  ( ph  ->  F : A --> B )
Assertion
Ref Expression
igsumval  |-  ( ph  ->  ( G  gsumg  F )  =  ( iota x ( ( A  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
Distinct variable groups:    x,  .+    x,  .0.    m, F, n, x    m, G, n, x    ph, m, n, x
Allowed substitution hints:    A( x, m, n)    B( x, m, n)    .+ ( m, n)    V( x, m, n)    X( x, m, n)    .0. ( m, n)

Proof of Theorem igsumval
StepHypRef Expression
1 gsumval.b . 2  |-  B  =  ( Base `  G
)
2 gsumval.z . 2  |-  .0.  =  ( 0g `  G )
3 gsumval.p . 2  |-  .+  =  ( +g  `  G )
4 gsumval.g . 2  |-  ( ph  ->  G  e.  V )
5 gsumval.f . . 3  |-  ( ph  ->  F : A --> B )
6 gsumval.a . . 3  |-  ( ph  ->  A  e.  X )
75, 6fexd 5868 . 2  |-  ( ph  ->  F  e.  _V )
85fdmd 5479 . 2  |-  ( ph  ->  dom  F  =  A )
91, 2, 3, 4, 7, 8igsumvalx 13417 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( iota x ( ( A  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    = wceq 1395   E.wex 1538    e. wcel 2200   E.wrex 2509   _Vcvv 2799   (/)c0 3491   iotacio 5275   -->wf 5313   ` cfv 5317  (class class class)co 6000   ZZ>=cuz 9718   ...cfz 10200    seqcseq 10664   Basecbs 13027   +g cplusg 13105   0gc0g 13284    gsumg cgsu 13285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-recs 6449  df-frec 6535  df-neg 8316  df-inn 9107  df-z 9443  df-uz 9719  df-seqfrec 10665  df-ndx 13030  df-slot 13031  df-base 13033  df-0g 13286  df-igsum 13287
This theorem is referenced by:  gsumfzval  13419  gsumress  13423  gsum0g  13424  gsumval2  13425
  Copyright terms: Public domain W3C validator