ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzval Unicode version

Theorem gsumfzval 13010
Description: An expression for  gsumg when summing over a finite set of sequential integers. (Contributed by Jim Kingdon, 14-Aug-2025.)
Hypotheses
Ref Expression
gsumval.b  |-  B  =  ( Base `  G
)
gsumval.z  |-  .0.  =  ( 0g `  G )
gsumval.p  |-  .+  =  ( +g  `  G )
gsumval.g  |-  ( ph  ->  G  e.  V )
gsumfzval.m  |-  ( ph  ->  M  e.  ZZ )
gsumfzval.n  |-  ( ph  ->  N  e.  ZZ )
gsumfzval.f  |-  ( ph  ->  F : ( M ... N ) --> B )
Assertion
Ref Expression
gsumfzval  |-  ( ph  ->  ( G  gsumg  F )  =  if ( N  <  M ,  .0.  ,  (  seq M (  .+  ,  F ) `  N
) ) )

Proof of Theorem gsumfzval
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval.b . . 3  |-  B  =  ( Base `  G
)
2 gsumval.z . . 3  |-  .0.  =  ( 0g `  G )
3 gsumval.p . . 3  |-  .+  =  ( +g  `  G )
4 gsumval.g . . 3  |-  ( ph  ->  G  e.  V )
5 gsumfzval.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
6 gsumfzval.n . . . 4  |-  ( ph  ->  N  e.  ZZ )
75, 6fzfigd 10508 . . 3  |-  ( ph  ->  ( M ... N
)  e.  Fin )
8 gsumfzval.f . . 3  |-  ( ph  ->  F : ( M ... N ) --> B )
91, 2, 3, 4, 7, 8igsumval 13009 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  ( iota x ( ( ( M ... N
)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
10 fn0g 12994 . . . . . 6  |-  0g  Fn  _V
114elexd 2776 . . . . . 6  |-  ( ph  ->  G  e.  _V )
12 funfvex 5575 . . . . . . 7  |-  ( ( Fun  0g  /\  G  e.  dom  0g )  -> 
( 0g `  G
)  e.  _V )
1312funfni 5358 . . . . . 6  |-  ( ( 0g  Fn  _V  /\  G  e.  _V )  ->  ( 0g `  G
)  e.  _V )
1410, 11, 13sylancr 414 . . . . 5  |-  ( ph  ->  ( 0g `  G
)  e.  _V )
152, 14eqeltrid 2283 . . . 4  |-  ( ph  ->  .0.  e.  _V )
16 seqex 10526 . . . . 5  |-  seq M
(  .+  ,  F
)  e.  _V
17 fvexg 5577 . . . . 5  |-  ( (  seq M (  .+  ,  F )  e.  _V  /\  N  e.  ZZ )  ->  (  seq M
(  .+  ,  F
) `  N )  e.  _V )
1816, 6, 17sylancr 414 . . . 4  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  e. 
_V )
1915, 18ifexd 4519 . . 3  |-  ( ph  ->  if ( N  < 
M ,  .0.  , 
(  seq M (  .+  ,  F ) `  N
) )  e.  _V )
20 zdclt 9400 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  -> DECID  N  <  M )
216, 5, 20syl2anc 411 . . . . . . 7  |-  ( ph  -> DECID  N  <  M )
22 eqifdc 3596 . . . . . . 7  |-  (DECID  N  < 
M  ->  ( x  =  if ( N  < 
M ,  .0.  , 
(  seq M (  .+  ,  F ) `  N
) )  <->  ( ( N  <  M  /\  x  =  .0.  )  \/  ( -.  N  <  M  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) ) ) )
2321, 22syl 14 . . . . . 6  |-  ( ph  ->  ( x  =  if ( N  <  M ,  .0.  ,  (  seq M (  .+  ,  F ) `  N
) )  <->  ( ( N  <  M  /\  x  =  .0.  )  \/  ( -.  N  <  M  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) ) ) )
24 fzn 10114 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  <->  ( M ... N )  =  (/) ) )
255, 6, 24syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( N  <  M  <->  ( M ... N )  =  (/) ) )
2625anbi1d 465 . . . . . . 7  |-  ( ph  ->  ( ( N  < 
M  /\  x  =  .0.  )  <->  ( ( M ... N )  =  (/)  /\  x  =  .0.  ) ) )
275adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )  ->  M  e.  ZZ )
2827zred 9445 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )  ->  M  e.  RR )
296adantr 276 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )  ->  N  e.  ZZ )
3029zred 9445 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )  ->  N  e.  RR )
31 simprl 529 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )  ->  -.  N  <  M )
3228, 30, 31nltled 8145 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )  ->  M  <_  N )
33 eluz 9611 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  M )  <->  M  <_  N ) )
3427, 29, 33syl2anc 411 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )  ->  ( N  e.  ( ZZ>= `  M )  <->  M  <_  N ) )
3532, 34mpbird 167 . . . . . . . . . . 11  |-  ( (
ph  /\  ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )  ->  N  e.  ( ZZ>= `  M )
)
36 oveq2 5930 . . . . . . . . . . . . . 14  |-  ( n  =  N  ->  ( M ... n )  =  ( M ... N
) )
3736eqeq2d 2208 . . . . . . . . . . . . 13  |-  ( n  =  N  ->  (
( M ... N
)  =  ( M ... n )  <->  ( M ... N )  =  ( M ... N ) ) )
38 fveq2 5558 . . . . . . . . . . . . . 14  |-  ( n  =  N  ->  (  seq M (  .+  ,  F ) `  n
)  =  (  seq M (  .+  ,  F ) `  N
) )
3938eqeq2d 2208 . . . . . . . . . . . . 13  |-  ( n  =  N  ->  (
x  =  (  seq M (  .+  ,  F ) `  n
)  <->  x  =  (  seq M (  .+  ,  F ) `  N
) ) )
4037, 39anbi12d 473 . . . . . . . . . . . 12  |-  ( n  =  N  ->  (
( ( M ... N )  =  ( M ... n )  /\  x  =  (  seq M (  .+  ,  F ) `  n
) )  <->  ( ( M ... N )  =  ( M ... N
)  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) ) )
4140adantl 277 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( -.  N  <  M  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) )  /\  n  =  N )  ->  ( ( ( M ... N )  =  ( M ... n
)  /\  x  =  (  seq M (  .+  ,  F ) `  n
) )  <->  ( ( M ... N )  =  ( M ... N
)  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) ) )
42 eqidd 2197 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )  ->  ( M ... N )  =  ( M ... N ) )
43 simprr 531 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )  ->  x  =  (  seq M (  .+  ,  F ) `  N
) )
4442, 43jca 306 . . . . . . . . . . 11  |-  ( (
ph  /\  ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )  ->  ( ( M ... N )  =  ( M ... N
)  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) )
4535, 41, 44rspcedvd 2874 . . . . . . . . . 10  |-  ( (
ph  /\  ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )  ->  E. n  e.  ( ZZ>= `  M )
( ( M ... N )  =  ( M ... n )  /\  x  =  (  seq M (  .+  ,  F ) `  n
) ) )
46 fveq2 5558 . . . . . . . . . . . 12  |-  ( m  =  M  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  M )
)
47 oveq1 5929 . . . . . . . . . . . . . 14  |-  ( m  =  M  ->  (
m ... n )  =  ( M ... n
) )
4847eqeq2d 2208 . . . . . . . . . . . . 13  |-  ( m  =  M  ->  (
( M ... N
)  =  ( m ... n )  <->  ( M ... N )  =  ( M ... n ) ) )
49 seqeq1 10527 . . . . . . . . . . . . . . 15  |-  ( m  =  M  ->  seq m (  .+  ,  F )  =  seq M (  .+  ,  F ) )
5049fveq1d 5560 . . . . . . . . . . . . . 14  |-  ( m  =  M  ->  (  seq m (  .+  ,  F ) `  n
)  =  (  seq M (  .+  ,  F ) `  n
) )
5150eqeq2d 2208 . . . . . . . . . . . . 13  |-  ( m  =  M  ->  (
x  =  (  seq m (  .+  ,  F ) `  n
)  <->  x  =  (  seq M (  .+  ,  F ) `  n
) ) )
5248, 51anbi12d 473 . . . . . . . . . . . 12  |-  ( m  =  M  ->  (
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  <->  ( ( M ... N )  =  ( M ... n
)  /\  x  =  (  seq M (  .+  ,  F ) `  n
) ) ) )
5346, 52rexeqbidv 2710 . . . . . . . . . . 11  |-  ( m  =  M  ->  ( E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  <->  E. n  e.  ( ZZ>= `  M )
( ( M ... N )  =  ( M ... n )  /\  x  =  (  seq M (  .+  ,  F ) `  n
) ) ) )
5453spcegv 2852 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  ( E. n  e.  ( ZZ>=
`  M ) ( ( M ... N
)  =  ( M ... n )  /\  x  =  (  seq M (  .+  ,  F ) `  n
) )  ->  E. m E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
5527, 45, 54sylc 62 . . . . . . . . 9  |-  ( (
ph  /\  ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )  ->  E. m E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )
5655ex 115 . . . . . . . 8  |-  ( ph  ->  ( ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) )  ->  E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
57 eluzel2 9603 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( ZZ>= `  m
)  ->  m  e.  ZZ )
5857ad2antlr 489 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  m  e.  ZZ )
5958zred 9445 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  m  e.  RR )
60 eluzelre 9608 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  m
)  ->  n  e.  RR )
6160ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  n  e.  RR )
62 eluzle 9610 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  m
)  ->  m  <_  n )
6362ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  m  <_  n )
6459, 61, 63lensymd 8146 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  -.  n  <  m )
65 simprl 529 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
( M ... N
)  =  ( m ... n ) )
6665eqcomd 2202 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
( m ... n
)  =  ( M ... N ) )
67 fzopth 10133 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  m
)  ->  ( (
m ... n )  =  ( M ... N
)  <->  ( m  =  M  /\  n  =  N ) ) )
6867ad2antlr 489 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
( ( m ... n )  =  ( M ... N )  <-> 
( m  =  M  /\  n  =  N ) ) )
6966, 68mpbid 147 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
( m  =  M  /\  n  =  N ) )
7069simprd 114 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  n  =  N )
7169simpld 112 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  m  =  M )
7270, 71breq12d 4046 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
( n  <  m  <->  N  <  M ) )
7364, 72mtbid 673 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  -.  N  <  M )
74 simprr 531 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  x  =  (  seq m (  .+  ,  F ) `  n
) )
7571seqeq1d 10530 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  seq m (  .+  ,  F )  =  seq M (  .+  ,  F ) )
7675, 70fveq12d 5565 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
(  seq m (  .+  ,  F ) `  n
)  =  (  seq M (  .+  ,  F ) `  N
) )
7774, 76eqtrd 2229 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  x  =  (  seq M (  .+  ,  F ) `  N
) )
7873, 77jca 306 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
( -.  N  < 
M  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) )
7978rexlimdva2 2617 . . . . . . . . 9  |-  ( ph  ->  ( E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  ->  ( -.  N  <  M  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) ) )
8079exlimdv 1833 . . . . . . . 8  |-  ( ph  ->  ( E. m E. n  e.  ( ZZ>= `  m ) ( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
)  ->  ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) ) ) )
8156, 80impbid 129 . . . . . . 7  |-  ( ph  ->  ( ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) )  <->  E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
8226, 81orbi12d 794 . . . . . 6  |-  ( ph  ->  ( ( ( N  <  M  /\  x  =  .0.  )  \/  ( -.  N  <  M  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) )  <->  ( (
( M ... N
)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
8323, 82bitr2d 189 . . . . 5  |-  ( ph  ->  ( ( ( ( M ... N )  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  <->  x  =  if ( N  <  M ,  .0.  ,  (  seq M (  .+  ,  F ) `  N
) ) ) )
8483adantr 276 . . . 4  |-  ( (
ph  /\  if ( N  <  M ,  .0.  ,  (  seq M ( 
.+  ,  F ) `
 N ) )  e.  _V )  -> 
( ( ( ( M ... N )  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  <->  x  =  if ( N  <  M ,  .0.  ,  (  seq M (  .+  ,  F ) `  N
) ) ) )
8584iota5 5240 . . 3  |-  ( (
ph  /\  if ( N  <  M ,  .0.  ,  (  seq M ( 
.+  ,  F ) `
 N ) )  e.  _V )  -> 
( iota x ( ( ( M ... N
)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )  =  if ( N  <  M ,  .0.  ,  (  seq M ( 
.+  ,  F ) `
 N ) ) )
8619, 85mpdan 421 . 2  |-  ( ph  ->  ( iota x ( ( ( M ... N )  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )  =  if ( N  <  M ,  .0.  ,  (  seq M ( 
.+  ,  F ) `
 N ) ) )
879, 86eqtrd 2229 1  |-  ( ph  ->  ( G  gsumg  F )  =  if ( N  <  M ,  .0.  ,  (  seq M (  .+  ,  F ) `  N
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364   E.wex 1506    e. wcel 2167   E.wrex 2476   _Vcvv 2763   (/)c0 3450   ifcif 3561   class class class wbr 4033   iotacio 5217    Fn wfn 5253   -->wf 5254   ` cfv 5258  (class class class)co 5922   Fincfn 6799   RRcr 7876    < clt 8059    <_ cle 8060   ZZcz 9323   ZZ>=cuz 9598   ...cfz 10080    seqcseq 10524   Basecbs 12654   +g cplusg 12731   0gc0g 12903    gsumg cgsu 12904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-addcom 7977  ax-addass 7979  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-0id 7985  ax-rnegex 7986  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-er 6592  df-en 6800  df-fin 6802  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-inn 8988  df-n0 9247  df-z 9324  df-uz 9599  df-fz 10081  df-seqfrec 10525  df-ndx 12657  df-slot 12658  df-base 12660  df-0g 12905  df-igsum 12906
This theorem is referenced by:  gsumfzz  13103  gsumfzcl  13107  gsumfzreidx  13443  gsumfzsubmcl  13444  gsumfzmptfidmadd  13445  gsumfzmhm  13449
  Copyright terms: Public domain W3C validator