ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzval Unicode version

Theorem gsumfzval 13432
Description: An expression for  gsumg when summing over a finite set of sequential integers. (Contributed by Jim Kingdon, 14-Aug-2025.)
Hypotheses
Ref Expression
gsumval.b  |-  B  =  ( Base `  G
)
gsumval.z  |-  .0.  =  ( 0g `  G )
gsumval.p  |-  .+  =  ( +g  `  G )
gsumval.g  |-  ( ph  ->  G  e.  V )
gsumfzval.m  |-  ( ph  ->  M  e.  ZZ )
gsumfzval.n  |-  ( ph  ->  N  e.  ZZ )
gsumfzval.f  |-  ( ph  ->  F : ( M ... N ) --> B )
Assertion
Ref Expression
gsumfzval  |-  ( ph  ->  ( G  gsumg  F )  =  if ( N  <  M ,  .0.  ,  (  seq M (  .+  ,  F ) `  N
) ) )

Proof of Theorem gsumfzval
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval.b . . 3  |-  B  =  ( Base `  G
)
2 gsumval.z . . 3  |-  .0.  =  ( 0g `  G )
3 gsumval.p . . 3  |-  .+  =  ( +g  `  G )
4 gsumval.g . . 3  |-  ( ph  ->  G  e.  V )
5 gsumfzval.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
6 gsumfzval.n . . . 4  |-  ( ph  ->  N  e.  ZZ )
75, 6fzfigd 10661 . . 3  |-  ( ph  ->  ( M ... N
)  e.  Fin )
8 gsumfzval.f . . 3  |-  ( ph  ->  F : ( M ... N ) --> B )
91, 2, 3, 4, 7, 8igsumval 13431 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  ( iota x ( ( ( M ... N
)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
10 fn0g 13416 . . . . . 6  |-  0g  Fn  _V
114elexd 2813 . . . . . 6  |-  ( ph  ->  G  e.  _V )
12 funfvex 5646 . . . . . . 7  |-  ( ( Fun  0g  /\  G  e.  dom  0g )  -> 
( 0g `  G
)  e.  _V )
1312funfni 5423 . . . . . 6  |-  ( ( 0g  Fn  _V  /\  G  e.  _V )  ->  ( 0g `  G
)  e.  _V )
1410, 11, 13sylancr 414 . . . . 5  |-  ( ph  ->  ( 0g `  G
)  e.  _V )
152, 14eqeltrid 2316 . . . 4  |-  ( ph  ->  .0.  e.  _V )
16 seqex 10679 . . . . 5  |-  seq M
(  .+  ,  F
)  e.  _V
17 fvexg 5648 . . . . 5  |-  ( (  seq M (  .+  ,  F )  e.  _V  /\  N  e.  ZZ )  ->  (  seq M
(  .+  ,  F
) `  N )  e.  _V )
1816, 6, 17sylancr 414 . . . 4  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  e. 
_V )
1915, 18ifexd 4575 . . 3  |-  ( ph  ->  if ( N  < 
M ,  .0.  , 
(  seq M (  .+  ,  F ) `  N
) )  e.  _V )
20 zdclt 9532 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  -> DECID  N  <  M )
216, 5, 20syl2anc 411 . . . . . . 7  |-  ( ph  -> DECID  N  <  M )
22 eqifdc 3639 . . . . . . 7  |-  (DECID  N  < 
M  ->  ( x  =  if ( N  < 
M ,  .0.  , 
(  seq M (  .+  ,  F ) `  N
) )  <->  ( ( N  <  M  /\  x  =  .0.  )  \/  ( -.  N  <  M  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) ) ) )
2321, 22syl 14 . . . . . 6  |-  ( ph  ->  ( x  =  if ( N  <  M ,  .0.  ,  (  seq M (  .+  ,  F ) `  N
) )  <->  ( ( N  <  M  /\  x  =  .0.  )  \/  ( -.  N  <  M  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) ) ) )
24 fzn 10246 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  <->  ( M ... N )  =  (/) ) )
255, 6, 24syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( N  <  M  <->  ( M ... N )  =  (/) ) )
2625anbi1d 465 . . . . . . 7  |-  ( ph  ->  ( ( N  < 
M  /\  x  =  .0.  )  <->  ( ( M ... N )  =  (/)  /\  x  =  .0.  ) ) )
275adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )  ->  M  e.  ZZ )
2827zred 9577 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )  ->  M  e.  RR )
296adantr 276 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )  ->  N  e.  ZZ )
3029zred 9577 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )  ->  N  e.  RR )
31 simprl 529 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )  ->  -.  N  <  M )
3228, 30, 31nltled 8275 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )  ->  M  <_  N )
33 eluz 9743 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  M )  <->  M  <_  N ) )
3427, 29, 33syl2anc 411 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )  ->  ( N  e.  ( ZZ>= `  M )  <->  M  <_  N ) )
3532, 34mpbird 167 . . . . . . . . . . 11  |-  ( (
ph  /\  ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )  ->  N  e.  ( ZZ>= `  M )
)
36 oveq2 6015 . . . . . . . . . . . . . 14  |-  ( n  =  N  ->  ( M ... n )  =  ( M ... N
) )
3736eqeq2d 2241 . . . . . . . . . . . . 13  |-  ( n  =  N  ->  (
( M ... N
)  =  ( M ... n )  <->  ( M ... N )  =  ( M ... N ) ) )
38 fveq2 5629 . . . . . . . . . . . . . 14  |-  ( n  =  N  ->  (  seq M (  .+  ,  F ) `  n
)  =  (  seq M (  .+  ,  F ) `  N
) )
3938eqeq2d 2241 . . . . . . . . . . . . 13  |-  ( n  =  N  ->  (
x  =  (  seq M (  .+  ,  F ) `  n
)  <->  x  =  (  seq M (  .+  ,  F ) `  N
) ) )
4037, 39anbi12d 473 . . . . . . . . . . . 12  |-  ( n  =  N  ->  (
( ( M ... N )  =  ( M ... n )  /\  x  =  (  seq M (  .+  ,  F ) `  n
) )  <->  ( ( M ... N )  =  ( M ... N
)  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) ) )
4140adantl 277 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( -.  N  <  M  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) )  /\  n  =  N )  ->  ( ( ( M ... N )  =  ( M ... n
)  /\  x  =  (  seq M (  .+  ,  F ) `  n
) )  <->  ( ( M ... N )  =  ( M ... N
)  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) ) )
42 eqidd 2230 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )  ->  ( M ... N )  =  ( M ... N ) )
43 simprr 531 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )  ->  x  =  (  seq M (  .+  ,  F ) `  N
) )
4442, 43jca 306 . . . . . . . . . . 11  |-  ( (
ph  /\  ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )  ->  ( ( M ... N )  =  ( M ... N
)  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) )
4535, 41, 44rspcedvd 2913 . . . . . . . . . 10  |-  ( (
ph  /\  ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )  ->  E. n  e.  ( ZZ>= `  M )
( ( M ... N )  =  ( M ... n )  /\  x  =  (  seq M (  .+  ,  F ) `  n
) ) )
46 fveq2 5629 . . . . . . . . . . . 12  |-  ( m  =  M  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  M )
)
47 oveq1 6014 . . . . . . . . . . . . . 14  |-  ( m  =  M  ->  (
m ... n )  =  ( M ... n
) )
4847eqeq2d 2241 . . . . . . . . . . . . 13  |-  ( m  =  M  ->  (
( M ... N
)  =  ( m ... n )  <->  ( M ... N )  =  ( M ... n ) ) )
49 seqeq1 10680 . . . . . . . . . . . . . . 15  |-  ( m  =  M  ->  seq m (  .+  ,  F )  =  seq M (  .+  ,  F ) )
5049fveq1d 5631 . . . . . . . . . . . . . 14  |-  ( m  =  M  ->  (  seq m (  .+  ,  F ) `  n
)  =  (  seq M (  .+  ,  F ) `  n
) )
5150eqeq2d 2241 . . . . . . . . . . . . 13  |-  ( m  =  M  ->  (
x  =  (  seq m (  .+  ,  F ) `  n
)  <->  x  =  (  seq M (  .+  ,  F ) `  n
) ) )
5248, 51anbi12d 473 . . . . . . . . . . . 12  |-  ( m  =  M  ->  (
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  <->  ( ( M ... N )  =  ( M ... n
)  /\  x  =  (  seq M (  .+  ,  F ) `  n
) ) ) )
5346, 52rexeqbidv 2745 . . . . . . . . . . 11  |-  ( m  =  M  ->  ( E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  <->  E. n  e.  ( ZZ>= `  M )
( ( M ... N )  =  ( M ... n )  /\  x  =  (  seq M (  .+  ,  F ) `  n
) ) ) )
5453spcegv 2891 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  ( E. n  e.  ( ZZ>=
`  M ) ( ( M ... N
)  =  ( M ... n )  /\  x  =  (  seq M (  .+  ,  F ) `  n
) )  ->  E. m E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
5527, 45, 54sylc 62 . . . . . . . . 9  |-  ( (
ph  /\  ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )  ->  E. m E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )
5655ex 115 . . . . . . . 8  |-  ( ph  ->  ( ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) )  ->  E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
57 eluzel2 9735 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( ZZ>= `  m
)  ->  m  e.  ZZ )
5857ad2antlr 489 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  m  e.  ZZ )
5958zred 9577 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  m  e.  RR )
60 eluzelre 9740 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  m
)  ->  n  e.  RR )
6160ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  n  e.  RR )
62 eluzle 9742 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  m
)  ->  m  <_  n )
6362ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  m  <_  n )
6459, 61, 63lensymd 8276 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  -.  n  <  m )
65 simprl 529 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
( M ... N
)  =  ( m ... n ) )
6665eqcomd 2235 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
( m ... n
)  =  ( M ... N ) )
67 fzopth 10265 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  m
)  ->  ( (
m ... n )  =  ( M ... N
)  <->  ( m  =  M  /\  n  =  N ) ) )
6867ad2antlr 489 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
( ( m ... n )  =  ( M ... N )  <-> 
( m  =  M  /\  n  =  N ) ) )
6966, 68mpbid 147 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
( m  =  M  /\  n  =  N ) )
7069simprd 114 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  n  =  N )
7169simpld 112 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  m  =  M )
7270, 71breq12d 4096 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
( n  <  m  <->  N  <  M ) )
7364, 72mtbid 676 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  -.  N  <  M )
74 simprr 531 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  x  =  (  seq m (  .+  ,  F ) `  n
) )
7571seqeq1d 10683 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  seq m (  .+  ,  F )  =  seq M (  .+  ,  F ) )
7675, 70fveq12d 5636 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
(  seq m (  .+  ,  F ) `  n
)  =  (  seq M (  .+  ,  F ) `  N
) )
7774, 76eqtrd 2262 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  x  =  (  seq M (  .+  ,  F ) `  N
) )
7873, 77jca 306 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  ( ( M ... N )  =  ( m ... n
)  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
( -.  N  < 
M  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) )
7978rexlimdva2 2651 . . . . . . . . 9  |-  ( ph  ->  ( E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  ->  ( -.  N  <  M  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) ) )
8079exlimdv 1865 . . . . . . . 8  |-  ( ph  ->  ( E. m E. n  e.  ( ZZ>= `  m ) ( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
)  ->  ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) ) ) )
8156, 80impbid 129 . . . . . . 7  |-  ( ph  ->  ( ( -.  N  <  M  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) )  <->  E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
8226, 81orbi12d 798 . . . . . 6  |-  ( ph  ->  ( ( ( N  <  M  /\  x  =  .0.  )  \/  ( -.  N  <  M  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) )  <->  ( (
( M ... N
)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
8323, 82bitr2d 189 . . . . 5  |-  ( ph  ->  ( ( ( ( M ... N )  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  <->  x  =  if ( N  <  M ,  .0.  ,  (  seq M (  .+  ,  F ) `  N
) ) ) )
8483adantr 276 . . . 4  |-  ( (
ph  /\  if ( N  <  M ,  .0.  ,  (  seq M ( 
.+  ,  F ) `
 N ) )  e.  _V )  -> 
( ( ( ( M ... N )  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  <->  x  =  if ( N  <  M ,  .0.  ,  (  seq M (  .+  ,  F ) `  N
) ) ) )
8584iota5 5300 . . 3  |-  ( (
ph  /\  if ( N  <  M ,  .0.  ,  (  seq M ( 
.+  ,  F ) `
 N ) )  e.  _V )  -> 
( iota x ( ( ( M ... N
)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )  =  if ( N  <  M ,  .0.  ,  (  seq M ( 
.+  ,  F ) `
 N ) ) )
8619, 85mpdan 421 . 2  |-  ( ph  ->  ( iota x ( ( ( M ... N )  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )  =  if ( N  <  M ,  .0.  ,  (  seq M ( 
.+  ,  F ) `
 N ) ) )
879, 86eqtrd 2262 1  |-  ( ph  ->  ( G  gsumg  F )  =  if ( N  <  M ,  .0.  ,  (  seq M (  .+  ,  F ) `  N
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    = wceq 1395   E.wex 1538    e. wcel 2200   E.wrex 2509   _Vcvv 2799   (/)c0 3491   ifcif 3602   class class class wbr 4083   iotacio 5276    Fn wfn 5313   -->wf 5314   ` cfv 5318  (class class class)co 6007   Fincfn 6895   RRcr 8006    < clt 8189    <_ cle 8190   ZZcz 9454   ZZ>=cuz 9730   ...cfz 10212    seqcseq 10677   Basecbs 13040   +g cplusg 13118   0gc0g 13297    gsumg cgsu 13298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-1o 6568  df-er 6688  df-en 6896  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-n0 9378  df-z 9455  df-uz 9731  df-fz 10213  df-seqfrec 10678  df-ndx 13043  df-slot 13044  df-base 13046  df-0g 13299  df-igsum 13300
This theorem is referenced by:  gsumfzz  13536  gsumfzcl  13540  gsumfzreidx  13882  gsumfzsubmcl  13883  gsumfzmptfidmadd  13884  gsumfzmhm  13888
  Copyright terms: Public domain W3C validator