ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  igsumval GIF version

Theorem igsumval 13292
Description: Expand out the substitutions in df-igsum 13161. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval.b 𝐵 = (Base‘𝐺)
gsumval.z 0 = (0g𝐺)
gsumval.p + = (+g𝐺)
gsumval.g (𝜑𝐺𝑉)
gsumval.a (𝜑𝐴𝑋)
gsumval.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
igsumval (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
Distinct variable groups:   𝑥, +   𝑥, 0   𝑚,𝐹,𝑛,𝑥   𝑚,𝐺,𝑛,𝑥   𝜑,𝑚,𝑛,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑚,𝑛)   𝐵(𝑥,𝑚,𝑛)   + (𝑚,𝑛)   𝑉(𝑥,𝑚,𝑛)   𝑋(𝑥,𝑚,𝑛)   0 (𝑚,𝑛)

Proof of Theorem igsumval
StepHypRef Expression
1 gsumval.b . 2 𝐵 = (Base‘𝐺)
2 gsumval.z . 2 0 = (0g𝐺)
3 gsumval.p . 2 + = (+g𝐺)
4 gsumval.g . 2 (𝜑𝐺𝑉)
5 gsumval.f . . 3 (𝜑𝐹:𝐴𝐵)
6 gsumval.a . . 3 (𝜑𝐴𝑋)
75, 6fexd 5826 . 2 (𝜑𝐹 ∈ V)
85fdmd 5441 . 2 (𝜑 → dom 𝐹 = 𝐴)
91, 2, 3, 4, 7, 8igsumvalx 13291 1 (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 710   = wceq 1373  wex 1516  wcel 2177  wrex 2486  Vcvv 2773  c0 3464  cio 5238  wf 5275  cfv 5279  (class class class)co 5956  cuz 9663  ...cfz 10145  seqcseq 10609  Basecbs 12902  +gcplusg 12979  0gc0g 13158   Σg cgsu 13159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-cnex 8031  ax-resscn 8032  ax-1re 8034  ax-addrcl 8037
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-recs 6403  df-frec 6489  df-neg 8261  df-inn 9052  df-z 9388  df-uz 9664  df-seqfrec 10610  df-ndx 12905  df-slot 12906  df-base 12908  df-0g 13160  df-igsum 13161
This theorem is referenced by:  gsumfzval  13293  gsumress  13297  gsum0g  13298  gsumval2  13299
  Copyright terms: Public domain W3C validator