ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  igsumval GIF version

Theorem igsumval 13418
Description: Expand out the substitutions in df-igsum 13287. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval.b 𝐵 = (Base‘𝐺)
gsumval.z 0 = (0g𝐺)
gsumval.p + = (+g𝐺)
gsumval.g (𝜑𝐺𝑉)
gsumval.a (𝜑𝐴𝑋)
gsumval.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
igsumval (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
Distinct variable groups:   𝑥, +   𝑥, 0   𝑚,𝐹,𝑛,𝑥   𝑚,𝐺,𝑛,𝑥   𝜑,𝑚,𝑛,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑚,𝑛)   𝐵(𝑥,𝑚,𝑛)   + (𝑚,𝑛)   𝑉(𝑥,𝑚,𝑛)   𝑋(𝑥,𝑚,𝑛)   0 (𝑚,𝑛)

Proof of Theorem igsumval
StepHypRef Expression
1 gsumval.b . 2 𝐵 = (Base‘𝐺)
2 gsumval.z . 2 0 = (0g𝐺)
3 gsumval.p . 2 + = (+g𝐺)
4 gsumval.g . 2 (𝜑𝐺𝑉)
5 gsumval.f . . 3 (𝜑𝐹:𝐴𝐵)
6 gsumval.a . . 3 (𝜑𝐴𝑋)
75, 6fexd 5868 . 2 (𝜑𝐹 ∈ V)
85fdmd 5479 . 2 (𝜑 → dom 𝐹 = 𝐴)
91, 2, 3, 4, 7, 8igsumvalx 13417 1 (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 713   = wceq 1395  wex 1538  wcel 2200  wrex 2509  Vcvv 2799  c0 3491  cio 5275  wf 5313  cfv 5317  (class class class)co 6000  cuz 9718  ...cfz 10200  seqcseq 10664  Basecbs 13027  +gcplusg 13105  0gc0g 13284   Σg cgsu 13285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-recs 6449  df-frec 6535  df-neg 8316  df-inn 9107  df-z 9443  df-uz 9719  df-seqfrec 10665  df-ndx 13030  df-slot 13031  df-base 13033  df-0g 13286  df-igsum 13287
This theorem is referenced by:  gsumfzval  13419  gsumress  13423  gsum0g  13424  gsumval2  13425
  Copyright terms: Public domain W3C validator