| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > igsumval | GIF version | ||
| Description: Expand out the substitutions in df-igsum 13161. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| gsumval.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumval.z | ⊢ 0 = (0g‘𝐺) |
| gsumval.p | ⊢ + = (+g‘𝐺) |
| gsumval.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| gsumval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| gsumval.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| igsumval | ⊢ (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumval.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsumval.z | . 2 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsumval.p | . 2 ⊢ + = (+g‘𝐺) | |
| 4 | gsumval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 5 | gsumval.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 6 | gsumval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 7 | 5, 6 | fexd 5826 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
| 8 | 5 | fdmd 5441 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 9 | 1, 2, 3, 4, 7, 8 | igsumvalx 13291 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 710 = wceq 1373 ∃wex 1516 ∈ wcel 2177 ∃wrex 2486 Vcvv 2773 ∅c0 3464 ℩cio 5238 ⟶wf 5275 ‘cfv 5279 (class class class)co 5956 ℤ≥cuz 9663 ...cfz 10145 seqcseq 10609 Basecbs 12902 +gcplusg 12979 0gc0g 13158 Σg cgsu 13159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1re 8034 ax-addrcl 8037 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-recs 6403 df-frec 6489 df-neg 8261 df-inn 9052 df-z 9388 df-uz 9664 df-seqfrec 10610 df-ndx 12905 df-slot 12906 df-base 12908 df-0g 13160 df-igsum 13161 |
| This theorem is referenced by: gsumfzval 13293 gsumress 13297 gsum0g 13298 gsumval2 13299 |
| Copyright terms: Public domain | W3C validator |