![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > igsumval | GIF version |
Description: Expand out the substitutions in df-igsum 12873. (Contributed by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
gsumval.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumval.z | ⊢ 0 = (0g‘𝐺) |
gsumval.p | ⊢ + = (+g‘𝐺) |
gsumval.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
gsumval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
gsumval.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
igsumval | ⊢ (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumval.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumval.z | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | gsumval.p | . 2 ⊢ + = (+g‘𝐺) | |
4 | gsumval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
5 | gsumval.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
6 | gsumval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
7 | 5, 6 | fexd 5789 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
8 | 5 | fdmd 5411 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
9 | 1, 2, 3, 4, 7, 8 | igsumvalx 12975 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ∃wrex 2473 Vcvv 2760 ∅c0 3447 ℩cio 5214 ⟶wf 5251 ‘cfv 5255 (class class class)co 5919 ℤ≥cuz 9595 ...cfz 10077 seqcseq 10521 Basecbs 12621 +gcplusg 12698 0gc0g 12870 Σg cgsu 12871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-recs 6360 df-frec 6446 df-neg 8195 df-inn 8985 df-z 9321 df-uz 9596 df-seqfrec 10522 df-ndx 12624 df-slot 12625 df-base 12627 df-0g 12872 df-igsum 12873 |
This theorem is referenced by: gsumfzval 12977 gsumress 12981 gsum0g 12982 gsumval2 12983 |
Copyright terms: Public domain | W3C validator |