| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > igsumval | GIF version | ||
| Description: Expand out the substitutions in df-igsum 13287. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| gsumval.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumval.z | ⊢ 0 = (0g‘𝐺) |
| gsumval.p | ⊢ + = (+g‘𝐺) |
| gsumval.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| gsumval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| gsumval.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| igsumval | ⊢ (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumval.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsumval.z | . 2 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsumval.p | . 2 ⊢ + = (+g‘𝐺) | |
| 4 | gsumval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 5 | gsumval.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 6 | gsumval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 7 | 5, 6 | fexd 5868 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
| 8 | 5 | fdmd 5479 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 9 | 1, 2, 3, 4, 7, 8 | igsumvalx 13417 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 713 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ∃wrex 2509 Vcvv 2799 ∅c0 3491 ℩cio 5275 ⟶wf 5313 ‘cfv 5317 (class class class)co 6000 ℤ≥cuz 9718 ...cfz 10200 seqcseq 10664 Basecbs 13027 +gcplusg 13105 0gc0g 13284 Σg cgsu 13285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-recs 6449 df-frec 6535 df-neg 8316 df-inn 9107 df-z 9443 df-uz 9719 df-seqfrec 10665 df-ndx 13030 df-slot 13031 df-base 13033 df-0g 13286 df-igsum 13287 |
| This theorem is referenced by: gsumfzval 13419 gsumress 13423 gsum0g 13424 gsumval2 13425 |
| Copyright terms: Public domain | W3C validator |