| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsum0g | Unicode version | ||
| Description: Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| gsum0.z |
|
| Ref | Expression |
|---|---|
| gsum0g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 |
. . 3
| |
| 2 | gsum0.z |
. . 3
| |
| 3 | eqid 2229 |
. . 3
| |
| 4 | id 19 |
. . 3
| |
| 5 | 0ex 4210 |
. . . 4
| |
| 6 | 5 | a1i 9 |
. . 3
|
| 7 | f0 5515 |
. . . 4
| |
| 8 | 7 | a1i 9 |
. . 3
|
| 9 | 1, 2, 3, 4, 6, 8 | igsumval 13418 |
. 2
|
| 10 | eqidd 2230 |
. . . . 5
| |
| 11 | eqidd 2230 |
. . . . 5
| |
| 12 | 10, 11 | jca 306 |
. . . 4
|
| 13 | 12 | orcd 738 |
. . 3
|
| 14 | fn0g 13403 |
. . . . . 6
| |
| 15 | elex 2811 |
. . . . . 6
| |
| 16 | funfvex 5643 |
. . . . . . 7
| |
| 17 | 16 | funfni 5422 |
. . . . . 6
|
| 18 | 14, 15, 17 | sylancr 414 |
. . . . 5
|
| 19 | 2, 18 | eqeltrid 2316 |
. . . 4
|
| 20 | eueq 2974 |
. . . . . 6
| |
| 21 | eqid 2229 |
. . . . . . . . 9
| |
| 22 | 21 | biantrur 303 |
. . . . . . . 8
|
| 23 | eluzfz1 10223 |
. . . . . . . . . . . . . 14
| |
| 24 | n0i 3497 |
. . . . . . . . . . . . . 14
| |
| 25 | 23, 24 | syl 14 |
. . . . . . . . . . . . 13
|
| 26 | 25 | neqcomd 2234 |
. . . . . . . . . . . 12
|
| 27 | 26 | intnanrd 937 |
. . . . . . . . . . 11
|
| 28 | 27 | nrex 2622 |
. . . . . . . . . 10
|
| 29 | 28 | nex 1546 |
. . . . . . . . 9
|
| 30 | 29 | biorfi 751 |
. . . . . . . 8
|
| 31 | 22, 30 | bitri 184 |
. . . . . . 7
|
| 32 | 31 | eubii 2086 |
. . . . . 6
|
| 33 | 20, 32 | bitri 184 |
. . . . 5
|
| 34 | 19, 33 | sylib 122 |
. . . 4
|
| 35 | eqeq1 2236 |
. . . . . . 7
| |
| 36 | 35 | anbi2d 464 |
. . . . . 6
|
| 37 | eqeq1 2236 |
. . . . . . . . 9
| |
| 38 | 37 | anbi2d 464 |
. . . . . . . 8
|
| 39 | 38 | rexbidv 2531 |
. . . . . . 7
|
| 40 | 39 | exbidv 1871 |
. . . . . 6
|
| 41 | 36, 40 | orbi12d 798 |
. . . . 5
|
| 42 | 41 | iota2 5307 |
. . . 4
|
| 43 | 19, 34, 42 | syl2anc 411 |
. . 3
|
| 44 | 13, 43 | mpbid 147 |
. 2
|
| 45 | 9, 44 | eqtrd 2262 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 ax-pre-ltirr 8107 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-neg 8316 df-inn 9107 df-z 9443 df-uz 9719 df-fz 10201 df-seqfrec 10665 df-ndx 13030 df-slot 13031 df-base 13033 df-0g 13286 df-igsum 13287 |
| This theorem is referenced by: gsumwsubmcl 13524 gsumwmhm 13526 mulgnn0gsum 13660 gsumfzfsumlem0 14544 |
| Copyright terms: Public domain | W3C validator |