ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsum0g Unicode version

Theorem gsum0g 13228
Description: Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypothesis
Ref Expression
gsum0.z  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
gsum0g  |-  ( G  e.  V  ->  ( G  gsumg  (/) )  =  .0.  )

Proof of Theorem gsum0g
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2205 . . 3  |-  ( Base `  G )  =  (
Base `  G )
2 gsum0.z . . 3  |-  .0.  =  ( 0g `  G )
3 eqid 2205 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
4 id 19 . . 3  |-  ( G  e.  V  ->  G  e.  V )
5 0ex 4171 . . . 4  |-  (/)  e.  _V
65a1i 9 . . 3  |-  ( G  e.  V  ->  (/)  e.  _V )
7 f0 5466 . . . 4  |-  (/) : (/) --> (
Base `  G )
87a1i 9 . . 3  |-  ( G  e.  V  ->  (/) : (/) --> (
Base `  G )
)
91, 2, 3, 4, 6, 8igsumval 13222 . 2  |-  ( G  e.  V  ->  ( G  gsumg  (/) )  =  ( iota x ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) ) )
10 eqidd 2206 . . . . 5  |-  ( G  e.  V  ->  (/)  =  (/) )
11 eqidd 2206 . . . . 5  |-  ( G  e.  V  ->  .0.  =  .0.  )
1210, 11jca 306 . . . 4  |-  ( G  e.  V  ->  ( (/)  =  (/)  /\  .0.  =  .0.  ) )
1312orcd 735 . . 3  |-  ( G  e.  V  ->  (
( (/)  =  (/)  /\  .0.  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) ) )
14 fn0g 13207 . . . . . 6  |-  0g  Fn  _V
15 elex 2783 . . . . . 6  |-  ( G  e.  V  ->  G  e.  _V )
16 funfvex 5593 . . . . . . 7  |-  ( ( Fun  0g  /\  G  e.  dom  0g )  -> 
( 0g `  G
)  e.  _V )
1716funfni 5376 . . . . . 6  |-  ( ( 0g  Fn  _V  /\  G  e.  _V )  ->  ( 0g `  G
)  e.  _V )
1814, 15, 17sylancr 414 . . . . 5  |-  ( G  e.  V  ->  ( 0g `  G )  e. 
_V )
192, 18eqeltrid 2292 . . . 4  |-  ( G  e.  V  ->  .0.  e.  _V )
20 eueq 2944 . . . . . 6  |-  (  .0. 
e.  _V  <->  E! x  x  =  .0.  )
21 eqid 2205 . . . . . . . . 9  |-  (/)  =  (/)
2221biantrur 303 . . . . . . . 8  |-  ( x  =  .0.  <->  ( (/)  =  (/)  /\  x  =  .0.  )
)
23 eluzfz1 10153 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  m
)  ->  m  e.  ( m ... n
) )
24 n0i 3466 . . . . . . . . . . . . . 14  |-  ( m  e.  ( m ... n )  ->  -.  ( m ... n
)  =  (/) )
2523, 24syl 14 . . . . . . . . . . . . 13  |-  ( n  e.  ( ZZ>= `  m
)  ->  -.  (
m ... n )  =  (/) )
2625neqcomd 2210 . . . . . . . . . . . 12  |-  ( n  e.  ( ZZ>= `  m
)  ->  -.  (/)  =  ( m ... n ) )
2726intnanrd 934 . . . . . . . . . . 11  |-  ( n  e.  ( ZZ>= `  m
)  ->  -.  ( (/)  =  ( m ... n )  /\  x  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) )
2827nrex 2598 . . . . . . . . . 10  |-  -.  E. n  e.  ( ZZ>= `  m ) ( (/)  =  ( m ... n )  /\  x  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) )
2928nex 1523 . . . . . . . . 9  |-  -.  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
)
3029biorfi 748 . . . . . . . 8  |-  ( (
(/)  =  (/)  /\  x  =  .0.  )  <->  ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )
3122, 30bitri 184 . . . . . . 7  |-  ( x  =  .0.  <->  ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )
3231eubii 2063 . . . . . 6  |-  ( E! x  x  =  .0.  <->  E! x ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )
3320, 32bitri 184 . . . . 5  |-  (  .0. 
e.  _V  <->  E! x ( (
(/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )
3419, 33sylib 122 . . . 4  |-  ( G  e.  V  ->  E! x ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )
35 eqeq1 2212 . . . . . . 7  |-  ( x  =  .0.  ->  (
x  =  .0.  <->  .0.  =  .0.  ) )
3635anbi2d 464 . . . . . 6  |-  ( x  =  .0.  ->  (
( (/)  =  (/)  /\  x  =  .0.  )  <->  ( (/)  =  (/)  /\  .0.  =  .0.  )
) )
37 eqeq1 2212 . . . . . . . . 9  |-  ( x  =  .0.  ->  (
x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )  <->  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) )
3837anbi2d 464 . . . . . . . 8  |-  ( x  =  .0.  ->  (
( (/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
)  <->  ( (/)  =  ( m ... n )  /\  .0.  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n
) ) ) )
3938rexbidv 2507 . . . . . . 7  |-  ( x  =  .0.  ->  ( E. n  e.  ( ZZ>=
`  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
)  <->  E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) ) )
4039exbidv 1848 . . . . . 6  |-  ( x  =  .0.  ->  ( E. m E. n  e.  ( ZZ>= `  m )
( (/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
)  <->  E. m E. n  e.  ( ZZ>= `  m )
( (/)  =  ( m ... n )  /\  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) ) )
4136, 40orbi12d 795 . . . . 5  |-  ( x  =  .0.  ->  (
( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  ( ZZ>= `  m )
( (/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) )  <->  ( ( (/)  =  (/)  /\  .0.  =  .0.  )  \/  E. m E. n  e.  ( ZZ>=
`  m ) (
(/)  =  ( m ... n )  /\  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) ) ) )
4241iota2 5261 . . . 4  |-  ( (  .0.  e.  _V  /\  E! x ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )  -> 
( ( ( (/)  =  (/)  /\  .0.  =  .0.  )  \/  E. m E. n  e.  ( ZZ>=
`  m ) (
(/)  =  ( m ... n )  /\  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) )  <-> 
( iota x ( (
(/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )  =  .0.  ) )
4319, 34, 42syl2anc 411 . . 3  |-  ( G  e.  V  ->  (
( ( (/)  =  (/)  /\  .0.  =  .0.  )  \/  E. m E. n  e.  ( ZZ>= `  m )
( (/)  =  ( m ... n )  /\  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) )  <-> 
( iota x ( (
(/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )  =  .0.  ) )
4413, 43mpbid 147 . 2  |-  ( G  e.  V  ->  ( iota x ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )  =  .0.  )
459, 44eqtrd 2238 1  |-  ( G  e.  V  ->  ( G  gsumg  (/) )  =  .0.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373   E.wex 1515   E!weu 2054    e. wcel 2176   E.wrex 2485   _Vcvv 2772   (/)c0 3460   iotacio 5230    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5944   ZZ>=cuz 9648   ...cfz 10130    seqcseq 10592   Basecbs 12832   +g cplusg 12909   0gc0g 13088    gsumg cgsu 13089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022  ax-pre-ltirr 8037
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-neg 8246  df-inn 9037  df-z 9373  df-uz 9649  df-fz 10131  df-seqfrec 10593  df-ndx 12835  df-slot 12836  df-base 12838  df-0g 13090  df-igsum 13091
This theorem is referenced by:  gsumwsubmcl  13328  gsumwmhm  13330  mulgnn0gsum  13464  gsumfzfsumlem0  14348
  Copyright terms: Public domain W3C validator