| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsum0g | Unicode version | ||
| Description: Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| gsum0.z |
|
| Ref | Expression |
|---|---|
| gsum0g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2205 |
. . 3
| |
| 2 | gsum0.z |
. . 3
| |
| 3 | eqid 2205 |
. . 3
| |
| 4 | id 19 |
. . 3
| |
| 5 | 0ex 4171 |
. . . 4
| |
| 6 | 5 | a1i 9 |
. . 3
|
| 7 | f0 5466 |
. . . 4
| |
| 8 | 7 | a1i 9 |
. . 3
|
| 9 | 1, 2, 3, 4, 6, 8 | igsumval 13222 |
. 2
|
| 10 | eqidd 2206 |
. . . . 5
| |
| 11 | eqidd 2206 |
. . . . 5
| |
| 12 | 10, 11 | jca 306 |
. . . 4
|
| 13 | 12 | orcd 735 |
. . 3
|
| 14 | fn0g 13207 |
. . . . . 6
| |
| 15 | elex 2783 |
. . . . . 6
| |
| 16 | funfvex 5593 |
. . . . . . 7
| |
| 17 | 16 | funfni 5376 |
. . . . . 6
|
| 18 | 14, 15, 17 | sylancr 414 |
. . . . 5
|
| 19 | 2, 18 | eqeltrid 2292 |
. . . 4
|
| 20 | eueq 2944 |
. . . . . 6
| |
| 21 | eqid 2205 |
. . . . . . . . 9
| |
| 22 | 21 | biantrur 303 |
. . . . . . . 8
|
| 23 | eluzfz1 10153 |
. . . . . . . . . . . . . 14
| |
| 24 | n0i 3466 |
. . . . . . . . . . . . . 14
| |
| 25 | 23, 24 | syl 14 |
. . . . . . . . . . . . 13
|
| 26 | 25 | neqcomd 2210 |
. . . . . . . . . . . 12
|
| 27 | 26 | intnanrd 934 |
. . . . . . . . . . 11
|
| 28 | 27 | nrex 2598 |
. . . . . . . . . 10
|
| 29 | 28 | nex 1523 |
. . . . . . . . 9
|
| 30 | 29 | biorfi 748 |
. . . . . . . 8
|
| 31 | 22, 30 | bitri 184 |
. . . . . . 7
|
| 32 | 31 | eubii 2063 |
. . . . . 6
|
| 33 | 20, 32 | bitri 184 |
. . . . 5
|
| 34 | 19, 33 | sylib 122 |
. . . 4
|
| 35 | eqeq1 2212 |
. . . . . . 7
| |
| 36 | 35 | anbi2d 464 |
. . . . . 6
|
| 37 | eqeq1 2212 |
. . . . . . . . 9
| |
| 38 | 37 | anbi2d 464 |
. . . . . . . 8
|
| 39 | 38 | rexbidv 2507 |
. . . . . . 7
|
| 40 | 39 | exbidv 1848 |
. . . . . 6
|
| 41 | 36, 40 | orbi12d 795 |
. . . . 5
|
| 42 | 41 | iota2 5261 |
. . . 4
|
| 43 | 19, 34, 42 | syl2anc 411 |
. . 3
|
| 44 | 13, 43 | mpbid 147 |
. 2
|
| 45 | 9, 44 | eqtrd 2238 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 ax-pre-ltirr 8037 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-recs 6391 df-frec 6477 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-neg 8246 df-inn 9037 df-z 9373 df-uz 9649 df-fz 10131 df-seqfrec 10593 df-ndx 12835 df-slot 12836 df-base 12838 df-0g 13090 df-igsum 13091 |
| This theorem is referenced by: gsumwsubmcl 13328 gsumwmhm 13330 mulgnn0gsum 13464 gsumfzfsumlem0 14348 |
| Copyright terms: Public domain | W3C validator |