ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsum0g Unicode version

Theorem gsum0g 13343
Description: Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypothesis
Ref Expression
gsum0.z  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
gsum0g  |-  ( G  e.  V  ->  ( G  gsumg  (/) )  =  .0.  )

Proof of Theorem gsum0g
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2207 . . 3  |-  ( Base `  G )  =  (
Base `  G )
2 gsum0.z . . 3  |-  .0.  =  ( 0g `  G )
3 eqid 2207 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
4 id 19 . . 3  |-  ( G  e.  V  ->  G  e.  V )
5 0ex 4187 . . . 4  |-  (/)  e.  _V
65a1i 9 . . 3  |-  ( G  e.  V  ->  (/)  e.  _V )
7 f0 5488 . . . 4  |-  (/) : (/) --> (
Base `  G )
87a1i 9 . . 3  |-  ( G  e.  V  ->  (/) : (/) --> (
Base `  G )
)
91, 2, 3, 4, 6, 8igsumval 13337 . 2  |-  ( G  e.  V  ->  ( G  gsumg  (/) )  =  ( iota x ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) ) )
10 eqidd 2208 . . . . 5  |-  ( G  e.  V  ->  (/)  =  (/) )
11 eqidd 2208 . . . . 5  |-  ( G  e.  V  ->  .0.  =  .0.  )
1210, 11jca 306 . . . 4  |-  ( G  e.  V  ->  ( (/)  =  (/)  /\  .0.  =  .0.  ) )
1312orcd 735 . . 3  |-  ( G  e.  V  ->  (
( (/)  =  (/)  /\  .0.  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) ) )
14 fn0g 13322 . . . . . 6  |-  0g  Fn  _V
15 elex 2788 . . . . . 6  |-  ( G  e.  V  ->  G  e.  _V )
16 funfvex 5616 . . . . . . 7  |-  ( ( Fun  0g  /\  G  e.  dom  0g )  -> 
( 0g `  G
)  e.  _V )
1716funfni 5395 . . . . . 6  |-  ( ( 0g  Fn  _V  /\  G  e.  _V )  ->  ( 0g `  G
)  e.  _V )
1814, 15, 17sylancr 414 . . . . 5  |-  ( G  e.  V  ->  ( 0g `  G )  e. 
_V )
192, 18eqeltrid 2294 . . . 4  |-  ( G  e.  V  ->  .0.  e.  _V )
20 eueq 2951 . . . . . 6  |-  (  .0. 
e.  _V  <->  E! x  x  =  .0.  )
21 eqid 2207 . . . . . . . . 9  |-  (/)  =  (/)
2221biantrur 303 . . . . . . . 8  |-  ( x  =  .0.  <->  ( (/)  =  (/)  /\  x  =  .0.  )
)
23 eluzfz1 10188 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  m
)  ->  m  e.  ( m ... n
) )
24 n0i 3474 . . . . . . . . . . . . . 14  |-  ( m  e.  ( m ... n )  ->  -.  ( m ... n
)  =  (/) )
2523, 24syl 14 . . . . . . . . . . . . 13  |-  ( n  e.  ( ZZ>= `  m
)  ->  -.  (
m ... n )  =  (/) )
2625neqcomd 2212 . . . . . . . . . . . 12  |-  ( n  e.  ( ZZ>= `  m
)  ->  -.  (/)  =  ( m ... n ) )
2726intnanrd 934 . . . . . . . . . . 11  |-  ( n  e.  ( ZZ>= `  m
)  ->  -.  ( (/)  =  ( m ... n )  /\  x  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) )
2827nrex 2600 . . . . . . . . . 10  |-  -.  E. n  e.  ( ZZ>= `  m ) ( (/)  =  ( m ... n )  /\  x  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) )
2928nex 1524 . . . . . . . . 9  |-  -.  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
)
3029biorfi 748 . . . . . . . 8  |-  ( (
(/)  =  (/)  /\  x  =  .0.  )  <->  ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )
3122, 30bitri 184 . . . . . . 7  |-  ( x  =  .0.  <->  ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )
3231eubii 2064 . . . . . 6  |-  ( E! x  x  =  .0.  <->  E! x ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )
3320, 32bitri 184 . . . . 5  |-  (  .0. 
e.  _V  <->  E! x ( (
(/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )
3419, 33sylib 122 . . . 4  |-  ( G  e.  V  ->  E! x ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )
35 eqeq1 2214 . . . . . . 7  |-  ( x  =  .0.  ->  (
x  =  .0.  <->  .0.  =  .0.  ) )
3635anbi2d 464 . . . . . 6  |-  ( x  =  .0.  ->  (
( (/)  =  (/)  /\  x  =  .0.  )  <->  ( (/)  =  (/)  /\  .0.  =  .0.  )
) )
37 eqeq1 2214 . . . . . . . . 9  |-  ( x  =  .0.  ->  (
x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )  <->  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) )
3837anbi2d 464 . . . . . . . 8  |-  ( x  =  .0.  ->  (
( (/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
)  <->  ( (/)  =  ( m ... n )  /\  .0.  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n
) ) ) )
3938rexbidv 2509 . . . . . . 7  |-  ( x  =  .0.  ->  ( E. n  e.  ( ZZ>=
`  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
)  <->  E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) ) )
4039exbidv 1849 . . . . . 6  |-  ( x  =  .0.  ->  ( E. m E. n  e.  ( ZZ>= `  m )
( (/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
)  <->  E. m E. n  e.  ( ZZ>= `  m )
( (/)  =  ( m ... n )  /\  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) ) )
4136, 40orbi12d 795 . . . . 5  |-  ( x  =  .0.  ->  (
( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  ( ZZ>= `  m )
( (/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) )  <->  ( ( (/)  =  (/)  /\  .0.  =  .0.  )  \/  E. m E. n  e.  ( ZZ>=
`  m ) (
(/)  =  ( m ... n )  /\  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) ) ) )
4241iota2 5280 . . . 4  |-  ( (  .0.  e.  _V  /\  E! x ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )  -> 
( ( ( (/)  =  (/)  /\  .0.  =  .0.  )  \/  E. m E. n  e.  ( ZZ>=
`  m ) (
(/)  =  ( m ... n )  /\  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) )  <-> 
( iota x ( (
(/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )  =  .0.  ) )
4319, 34, 42syl2anc 411 . . 3  |-  ( G  e.  V  ->  (
( ( (/)  =  (/)  /\  .0.  =  .0.  )  \/  E. m E. n  e.  ( ZZ>= `  m )
( (/)  =  ( m ... n )  /\  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) )  <-> 
( iota x ( (
(/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )  =  .0.  ) )
4413, 43mpbid 147 . 2  |-  ( G  e.  V  ->  ( iota x ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )  =  .0.  )
459, 44eqtrd 2240 1  |-  ( G  e.  V  ->  ( G  gsumg  (/) )  =  .0.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373   E.wex 1516   E!weu 2055    e. wcel 2178   E.wrex 2487   _Vcvv 2776   (/)c0 3468   iotacio 5249    Fn wfn 5285   -->wf 5286   ` cfv 5290  (class class class)co 5967   ZZ>=cuz 9683   ...cfz 10165    seqcseq 10629   Basecbs 12947   +g cplusg 13024   0gc0g 13203    gsumg cgsu 13204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057  ax-pre-ltirr 8072
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-neg 8281  df-inn 9072  df-z 9408  df-uz 9684  df-fz 10166  df-seqfrec 10630  df-ndx 12950  df-slot 12951  df-base 12953  df-0g 13205  df-igsum 13206
This theorem is referenced by:  gsumwsubmcl  13443  gsumwmhm  13445  mulgnn0gsum  13579  gsumfzfsumlem0  14463
  Copyright terms: Public domain W3C validator