ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsum0g Unicode version

Theorem gsum0g 12979
Description: Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypothesis
Ref Expression
gsum0.z  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
gsum0g  |-  ( G  e.  V  ->  ( G  gsumg  (/) )  =  .0.  )

Proof of Theorem gsum0g
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . 3  |-  ( Base `  G )  =  (
Base `  G )
2 gsum0.z . . 3  |-  .0.  =  ( 0g `  G )
3 eqid 2193 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
4 id 19 . . 3  |-  ( G  e.  V  ->  G  e.  V )
5 0ex 4156 . . . 4  |-  (/)  e.  _V
65a1i 9 . . 3  |-  ( G  e.  V  ->  (/)  e.  _V )
7 f0 5444 . . . 4  |-  (/) : (/) --> (
Base `  G )
87a1i 9 . . 3  |-  ( G  e.  V  ->  (/) : (/) --> (
Base `  G )
)
91, 2, 3, 4, 6, 8igsumval 12973 . 2  |-  ( G  e.  V  ->  ( G  gsumg  (/) )  =  ( iota x ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) ) )
10 eqidd 2194 . . . . 5  |-  ( G  e.  V  ->  (/)  =  (/) )
11 eqidd 2194 . . . . 5  |-  ( G  e.  V  ->  .0.  =  .0.  )
1210, 11jca 306 . . . 4  |-  ( G  e.  V  ->  ( (/)  =  (/)  /\  .0.  =  .0.  ) )
1312orcd 734 . . 3  |-  ( G  e.  V  ->  (
( (/)  =  (/)  /\  .0.  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) ) )
14 fn0g 12958 . . . . . 6  |-  0g  Fn  _V
15 elex 2771 . . . . . 6  |-  ( G  e.  V  ->  G  e.  _V )
16 funfvex 5571 . . . . . . 7  |-  ( ( Fun  0g  /\  G  e.  dom  0g )  -> 
( 0g `  G
)  e.  _V )
1716funfni 5354 . . . . . 6  |-  ( ( 0g  Fn  _V  /\  G  e.  _V )  ->  ( 0g `  G
)  e.  _V )
1814, 15, 17sylancr 414 . . . . 5  |-  ( G  e.  V  ->  ( 0g `  G )  e. 
_V )
192, 18eqeltrid 2280 . . . 4  |-  ( G  e.  V  ->  .0.  e.  _V )
20 eueq 2931 . . . . . 6  |-  (  .0. 
e.  _V  <->  E! x  x  =  .0.  )
21 eqid 2193 . . . . . . . . 9  |-  (/)  =  (/)
2221biantrur 303 . . . . . . . 8  |-  ( x  =  .0.  <->  ( (/)  =  (/)  /\  x  =  .0.  )
)
23 eluzfz1 10097 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  m
)  ->  m  e.  ( m ... n
) )
24 n0i 3452 . . . . . . . . . . . . . 14  |-  ( m  e.  ( m ... n )  ->  -.  ( m ... n
)  =  (/) )
2523, 24syl 14 . . . . . . . . . . . . 13  |-  ( n  e.  ( ZZ>= `  m
)  ->  -.  (
m ... n )  =  (/) )
2625neqcomd 2198 . . . . . . . . . . . 12  |-  ( n  e.  ( ZZ>= `  m
)  ->  -.  (/)  =  ( m ... n ) )
2726intnanrd 933 . . . . . . . . . . 11  |-  ( n  e.  ( ZZ>= `  m
)  ->  -.  ( (/)  =  ( m ... n )  /\  x  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) )
2827nrex 2586 . . . . . . . . . 10  |-  -.  E. n  e.  ( ZZ>= `  m ) ( (/)  =  ( m ... n )  /\  x  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) )
2928nex 1511 . . . . . . . . 9  |-  -.  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
)
3029biorfi 747 . . . . . . . 8  |-  ( (
(/)  =  (/)  /\  x  =  .0.  )  <->  ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )
3122, 30bitri 184 . . . . . . 7  |-  ( x  =  .0.  <->  ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )
3231eubii 2051 . . . . . 6  |-  ( E! x  x  =  .0.  <->  E! x ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )
3320, 32bitri 184 . . . . 5  |-  (  .0. 
e.  _V  <->  E! x ( (
(/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )
3419, 33sylib 122 . . . 4  |-  ( G  e.  V  ->  E! x ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )
35 eqeq1 2200 . . . . . . 7  |-  ( x  =  .0.  ->  (
x  =  .0.  <->  .0.  =  .0.  ) )
3635anbi2d 464 . . . . . 6  |-  ( x  =  .0.  ->  (
( (/)  =  (/)  /\  x  =  .0.  )  <->  ( (/)  =  (/)  /\  .0.  =  .0.  )
) )
37 eqeq1 2200 . . . . . . . . 9  |-  ( x  =  .0.  ->  (
x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )  <->  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) )
3837anbi2d 464 . . . . . . . 8  |-  ( x  =  .0.  ->  (
( (/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
)  <->  ( (/)  =  ( m ... n )  /\  .0.  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n
) ) ) )
3938rexbidv 2495 . . . . . . 7  |-  ( x  =  .0.  ->  ( E. n  e.  ( ZZ>=
`  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
)  <->  E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) ) )
4039exbidv 1836 . . . . . 6  |-  ( x  =  .0.  ->  ( E. m E. n  e.  ( ZZ>= `  m )
( (/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
)  <->  E. m E. n  e.  ( ZZ>= `  m )
( (/)  =  ( m ... n )  /\  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) ) )
4136, 40orbi12d 794 . . . . 5  |-  ( x  =  .0.  ->  (
( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  ( ZZ>= `  m )
( (/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) )  <->  ( ( (/)  =  (/)  /\  .0.  =  .0.  )  \/  E. m E. n  e.  ( ZZ>=
`  m ) (
(/)  =  ( m ... n )  /\  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) ) ) )
4241iota2 5244 . . . 4  |-  ( (  .0.  e.  _V  /\  E! x ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )  -> 
( ( ( (/)  =  (/)  /\  .0.  =  .0.  )  \/  E. m E. n  e.  ( ZZ>=
`  m ) (
(/)  =  ( m ... n )  /\  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) )  <-> 
( iota x ( (
(/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )  =  .0.  ) )
4319, 34, 42syl2anc 411 . . 3  |-  ( G  e.  V  ->  (
( ( (/)  =  (/)  /\  .0.  =  .0.  )  \/  E. m E. n  e.  ( ZZ>= `  m )
( (/)  =  ( m ... n )  /\  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) )  <-> 
( iota x ( (
(/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )  =  .0.  ) )
4413, 43mpbid 147 . 2  |-  ( G  e.  V  ->  ( iota x ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )  =  .0.  )
459, 44eqtrd 2226 1  |-  ( G  e.  V  ->  ( G  gsumg  (/) )  =  .0.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364   E.wex 1503   E!weu 2042    e. wcel 2164   E.wrex 2473   _Vcvv 2760   (/)c0 3446   iotacio 5213    Fn wfn 5249   -->wf 5250   ` cfv 5254  (class class class)co 5918   ZZ>=cuz 9592   ...cfz 10074    seqcseq 10518   Basecbs 12618   +g cplusg 12695   0gc0g 12867    gsumg cgsu 12868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969  ax-pre-ltirr 7984
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-neg 8193  df-inn 8983  df-z 9318  df-uz 9593  df-fz 10075  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-0g 12869  df-igsum 12870
This theorem is referenced by:  gsumwsubmcl  13068  gsumwmhm  13070  mulgnn0gsum  13198  gsumfzfsumlem0  14074
  Copyright terms: Public domain W3C validator