ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsum0g Unicode version

Theorem gsum0g 13424
Description: Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypothesis
Ref Expression
gsum0.z  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
gsum0g  |-  ( G  e.  V  ->  ( G  gsumg  (/) )  =  .0.  )

Proof of Theorem gsum0g
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . 3  |-  ( Base `  G )  =  (
Base `  G )
2 gsum0.z . . 3  |-  .0.  =  ( 0g `  G )
3 eqid 2229 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
4 id 19 . . 3  |-  ( G  e.  V  ->  G  e.  V )
5 0ex 4210 . . . 4  |-  (/)  e.  _V
65a1i 9 . . 3  |-  ( G  e.  V  ->  (/)  e.  _V )
7 f0 5515 . . . 4  |-  (/) : (/) --> (
Base `  G )
87a1i 9 . . 3  |-  ( G  e.  V  ->  (/) : (/) --> (
Base `  G )
)
91, 2, 3, 4, 6, 8igsumval 13418 . 2  |-  ( G  e.  V  ->  ( G  gsumg  (/) )  =  ( iota x ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) ) )
10 eqidd 2230 . . . . 5  |-  ( G  e.  V  ->  (/)  =  (/) )
11 eqidd 2230 . . . . 5  |-  ( G  e.  V  ->  .0.  =  .0.  )
1210, 11jca 306 . . . 4  |-  ( G  e.  V  ->  ( (/)  =  (/)  /\  .0.  =  .0.  ) )
1312orcd 738 . . 3  |-  ( G  e.  V  ->  (
( (/)  =  (/)  /\  .0.  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) ) )
14 fn0g 13403 . . . . . 6  |-  0g  Fn  _V
15 elex 2811 . . . . . 6  |-  ( G  e.  V  ->  G  e.  _V )
16 funfvex 5643 . . . . . . 7  |-  ( ( Fun  0g  /\  G  e.  dom  0g )  -> 
( 0g `  G
)  e.  _V )
1716funfni 5422 . . . . . 6  |-  ( ( 0g  Fn  _V  /\  G  e.  _V )  ->  ( 0g `  G
)  e.  _V )
1814, 15, 17sylancr 414 . . . . 5  |-  ( G  e.  V  ->  ( 0g `  G )  e. 
_V )
192, 18eqeltrid 2316 . . . 4  |-  ( G  e.  V  ->  .0.  e.  _V )
20 eueq 2974 . . . . . 6  |-  (  .0. 
e.  _V  <->  E! x  x  =  .0.  )
21 eqid 2229 . . . . . . . . 9  |-  (/)  =  (/)
2221biantrur 303 . . . . . . . 8  |-  ( x  =  .0.  <->  ( (/)  =  (/)  /\  x  =  .0.  )
)
23 eluzfz1 10223 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  m
)  ->  m  e.  ( m ... n
) )
24 n0i 3497 . . . . . . . . . . . . . 14  |-  ( m  e.  ( m ... n )  ->  -.  ( m ... n
)  =  (/) )
2523, 24syl 14 . . . . . . . . . . . . 13  |-  ( n  e.  ( ZZ>= `  m
)  ->  -.  (
m ... n )  =  (/) )
2625neqcomd 2234 . . . . . . . . . . . 12  |-  ( n  e.  ( ZZ>= `  m
)  ->  -.  (/)  =  ( m ... n ) )
2726intnanrd 937 . . . . . . . . . . 11  |-  ( n  e.  ( ZZ>= `  m
)  ->  -.  ( (/)  =  ( m ... n )  /\  x  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) )
2827nrex 2622 . . . . . . . . . 10  |-  -.  E. n  e.  ( ZZ>= `  m ) ( (/)  =  ( m ... n )  /\  x  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) )
2928nex 1546 . . . . . . . . 9  |-  -.  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
)
3029biorfi 751 . . . . . . . 8  |-  ( (
(/)  =  (/)  /\  x  =  .0.  )  <->  ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )
3122, 30bitri 184 . . . . . . 7  |-  ( x  =  .0.  <->  ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )
3231eubii 2086 . . . . . 6  |-  ( E! x  x  =  .0.  <->  E! x ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )
3320, 32bitri 184 . . . . 5  |-  (  .0. 
e.  _V  <->  E! x ( (
(/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )
3419, 33sylib 122 . . . 4  |-  ( G  e.  V  ->  E! x ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )
35 eqeq1 2236 . . . . . . 7  |-  ( x  =  .0.  ->  (
x  =  .0.  <->  .0.  =  .0.  ) )
3635anbi2d 464 . . . . . 6  |-  ( x  =  .0.  ->  (
( (/)  =  (/)  /\  x  =  .0.  )  <->  ( (/)  =  (/)  /\  .0.  =  .0.  )
) )
37 eqeq1 2236 . . . . . . . . 9  |-  ( x  =  .0.  ->  (
x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )  <->  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) )
3837anbi2d 464 . . . . . . . 8  |-  ( x  =  .0.  ->  (
( (/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
)  <->  ( (/)  =  ( m ... n )  /\  .0.  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n
) ) ) )
3938rexbidv 2531 . . . . . . 7  |-  ( x  =  .0.  ->  ( E. n  e.  ( ZZ>=
`  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
)  <->  E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) ) )
4039exbidv 1871 . . . . . 6  |-  ( x  =  .0.  ->  ( E. m E. n  e.  ( ZZ>= `  m )
( (/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
)  <->  E. m E. n  e.  ( ZZ>= `  m )
( (/)  =  ( m ... n )  /\  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) ) )
4136, 40orbi12d 798 . . . . 5  |-  ( x  =  .0.  ->  (
( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  ( ZZ>= `  m )
( (/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) )  <->  ( ( (/)  =  (/)  /\  .0.  =  .0.  )  \/  E. m E. n  e.  ( ZZ>=
`  m ) (
(/)  =  ( m ... n )  /\  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) ) ) )
4241iota2 5307 . . . 4  |-  ( (  .0.  e.  _V  /\  E! x ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )  -> 
( ( ( (/)  =  (/)  /\  .0.  =  .0.  )  \/  E. m E. n  e.  ( ZZ>=
`  m ) (
(/)  =  ( m ... n )  /\  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) )  <-> 
( iota x ( (
(/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )  =  .0.  ) )
4319, 34, 42syl2anc 411 . . 3  |-  ( G  e.  V  ->  (
( ( (/)  =  (/)  /\  .0.  =  .0.  )  \/  E. m E. n  e.  ( ZZ>= `  m )
( (/)  =  ( m ... n )  /\  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) )  <-> 
( iota x ( (
(/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )  =  .0.  ) )
4413, 43mpbid 147 . 2  |-  ( G  e.  V  ->  ( iota x ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )  =  .0.  )
459, 44eqtrd 2262 1  |-  ( G  e.  V  ->  ( G  gsumg  (/) )  =  .0.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395   E.wex 1538   E!weu 2077    e. wcel 2200   E.wrex 2509   _Vcvv 2799   (/)c0 3491   iotacio 5275    Fn wfn 5312   -->wf 5313   ` cfv 5317  (class class class)co 6000   ZZ>=cuz 9718   ...cfz 10200    seqcseq 10664   Basecbs 13027   +g cplusg 13105   0gc0g 13284    gsumg cgsu 13285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092  ax-pre-ltirr 8107
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-neg 8316  df-inn 9107  df-z 9443  df-uz 9719  df-fz 10201  df-seqfrec 10665  df-ndx 13030  df-slot 13031  df-base 13033  df-0g 13286  df-igsum 13287
This theorem is referenced by:  gsumwsubmcl  13524  gsumwmhm  13526  mulgnn0gsum  13660  gsumfzfsumlem0  14544
  Copyright terms: Public domain W3C validator