ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsum0g Unicode version

Theorem gsum0g 13039
Description: Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypothesis
Ref Expression
gsum0.z  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
gsum0g  |-  ( G  e.  V  ->  ( G  gsumg  (/) )  =  .0.  )

Proof of Theorem gsum0g
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . 3  |-  ( Base `  G )  =  (
Base `  G )
2 gsum0.z . . 3  |-  .0.  =  ( 0g `  G )
3 eqid 2196 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
4 id 19 . . 3  |-  ( G  e.  V  ->  G  e.  V )
5 0ex 4160 . . . 4  |-  (/)  e.  _V
65a1i 9 . . 3  |-  ( G  e.  V  ->  (/)  e.  _V )
7 f0 5448 . . . 4  |-  (/) : (/) --> (
Base `  G )
87a1i 9 . . 3  |-  ( G  e.  V  ->  (/) : (/) --> (
Base `  G )
)
91, 2, 3, 4, 6, 8igsumval 13033 . 2  |-  ( G  e.  V  ->  ( G  gsumg  (/) )  =  ( iota x ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) ) )
10 eqidd 2197 . . . . 5  |-  ( G  e.  V  ->  (/)  =  (/) )
11 eqidd 2197 . . . . 5  |-  ( G  e.  V  ->  .0.  =  .0.  )
1210, 11jca 306 . . . 4  |-  ( G  e.  V  ->  ( (/)  =  (/)  /\  .0.  =  .0.  ) )
1312orcd 734 . . 3  |-  ( G  e.  V  ->  (
( (/)  =  (/)  /\  .0.  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) ) )
14 fn0g 13018 . . . . . 6  |-  0g  Fn  _V
15 elex 2774 . . . . . 6  |-  ( G  e.  V  ->  G  e.  _V )
16 funfvex 5575 . . . . . . 7  |-  ( ( Fun  0g  /\  G  e.  dom  0g )  -> 
( 0g `  G
)  e.  _V )
1716funfni 5358 . . . . . 6  |-  ( ( 0g  Fn  _V  /\  G  e.  _V )  ->  ( 0g `  G
)  e.  _V )
1814, 15, 17sylancr 414 . . . . 5  |-  ( G  e.  V  ->  ( 0g `  G )  e. 
_V )
192, 18eqeltrid 2283 . . . 4  |-  ( G  e.  V  ->  .0.  e.  _V )
20 eueq 2935 . . . . . 6  |-  (  .0. 
e.  _V  <->  E! x  x  =  .0.  )
21 eqid 2196 . . . . . . . . 9  |-  (/)  =  (/)
2221biantrur 303 . . . . . . . 8  |-  ( x  =  .0.  <->  ( (/)  =  (/)  /\  x  =  .0.  )
)
23 eluzfz1 10106 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  m
)  ->  m  e.  ( m ... n
) )
24 n0i 3456 . . . . . . . . . . . . . 14  |-  ( m  e.  ( m ... n )  ->  -.  ( m ... n
)  =  (/) )
2523, 24syl 14 . . . . . . . . . . . . 13  |-  ( n  e.  ( ZZ>= `  m
)  ->  -.  (
m ... n )  =  (/) )
2625neqcomd 2201 . . . . . . . . . . . 12  |-  ( n  e.  ( ZZ>= `  m
)  ->  -.  (/)  =  ( m ... n ) )
2726intnanrd 933 . . . . . . . . . . 11  |-  ( n  e.  ( ZZ>= `  m
)  ->  -.  ( (/)  =  ( m ... n )  /\  x  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) )
2827nrex 2589 . . . . . . . . . 10  |-  -.  E. n  e.  ( ZZ>= `  m ) ( (/)  =  ( m ... n )  /\  x  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) )
2928nex 1514 . . . . . . . . 9  |-  -.  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
)
3029biorfi 747 . . . . . . . 8  |-  ( (
(/)  =  (/)  /\  x  =  .0.  )  <->  ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )
3122, 30bitri 184 . . . . . . 7  |-  ( x  =  .0.  <->  ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )
3231eubii 2054 . . . . . 6  |-  ( E! x  x  =  .0.  <->  E! x ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )
3320, 32bitri 184 . . . . 5  |-  (  .0. 
e.  _V  <->  E! x ( (
(/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )
3419, 33sylib 122 . . . 4  |-  ( G  e.  V  ->  E! x ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )
35 eqeq1 2203 . . . . . . 7  |-  ( x  =  .0.  ->  (
x  =  .0.  <->  .0.  =  .0.  ) )
3635anbi2d 464 . . . . . 6  |-  ( x  =  .0.  ->  (
( (/)  =  (/)  /\  x  =  .0.  )  <->  ( (/)  =  (/)  /\  .0.  =  .0.  )
) )
37 eqeq1 2203 . . . . . . . . 9  |-  ( x  =  .0.  ->  (
x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )  <->  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) )
3837anbi2d 464 . . . . . . . 8  |-  ( x  =  .0.  ->  (
( (/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
)  <->  ( (/)  =  ( m ... n )  /\  .0.  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n
) ) ) )
3938rexbidv 2498 . . . . . . 7  |-  ( x  =  .0.  ->  ( E. n  e.  ( ZZ>=
`  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
)  <->  E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) ) )
4039exbidv 1839 . . . . . 6  |-  ( x  =  .0.  ->  ( E. m E. n  e.  ( ZZ>= `  m )
( (/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
)  <->  E. m E. n  e.  ( ZZ>= `  m )
( (/)  =  ( m ... n )  /\  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) ) )
4136, 40orbi12d 794 . . . . 5  |-  ( x  =  .0.  ->  (
( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  ( ZZ>= `  m )
( (/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) )  <->  ( ( (/)  =  (/)  /\  .0.  =  .0.  )  \/  E. m E. n  e.  ( ZZ>=
`  m ) (
(/)  =  ( m ... n )  /\  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) ) ) )
4241iota2 5248 . . . 4  |-  ( (  .0.  e.  _V  /\  E! x ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )  -> 
( ( ( (/)  =  (/)  /\  .0.  =  .0.  )  \/  E. m E. n  e.  ( ZZ>=
`  m ) (
(/)  =  ( m ... n )  /\  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) )  <-> 
( iota x ( (
(/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )  =  .0.  ) )
4319, 34, 42syl2anc 411 . . 3  |-  ( G  e.  V  ->  (
( ( (/)  =  (/)  /\  .0.  =  .0.  )  \/  E. m E. n  e.  ( ZZ>= `  m )
( (/)  =  ( m ... n )  /\  .0.  =  (  seq m
( ( +g  `  G
) ,  (/) ) `  n ) ) )  <-> 
( iota x ( (
(/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )  =  .0.  ) )
4413, 43mpbid 147 . 2  |-  ( G  e.  V  ->  ( iota x ( ( (/)  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  (
ZZ>= `  m ) (
(/)  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  (/) ) `  n )
) ) )  =  .0.  )
459, 44eqtrd 2229 1  |-  ( G  e.  V  ->  ( G  gsumg  (/) )  =  .0.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364   E.wex 1506   E!weu 2045    e. wcel 2167   E.wrex 2476   _Vcvv 2763   (/)c0 3450   iotacio 5217    Fn wfn 5253   -->wf 5254   ` cfv 5258  (class class class)co 5922   ZZ>=cuz 9601   ...cfz 10083    seqcseq 10539   Basecbs 12678   +g cplusg 12755   0gc0g 12927    gsumg cgsu 12928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976  ax-pre-ltirr 7991
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-neg 8200  df-inn 8991  df-z 9327  df-uz 9602  df-fz 10084  df-seqfrec 10540  df-ndx 12681  df-slot 12682  df-base 12684  df-0g 12929  df-igsum 12930
This theorem is referenced by:  gsumwsubmcl  13128  gsumwmhm  13130  mulgnn0gsum  13258  gsumfzfsumlem0  14142
  Copyright terms: Public domain W3C validator