| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsum0g | Unicode version | ||
| Description: Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| gsum0.z |
|
| Ref | Expression |
|---|---|
| gsum0g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2207 |
. . 3
| |
| 2 | gsum0.z |
. . 3
| |
| 3 | eqid 2207 |
. . 3
| |
| 4 | id 19 |
. . 3
| |
| 5 | 0ex 4187 |
. . . 4
| |
| 6 | 5 | a1i 9 |
. . 3
|
| 7 | f0 5488 |
. . . 4
| |
| 8 | 7 | a1i 9 |
. . 3
|
| 9 | 1, 2, 3, 4, 6, 8 | igsumval 13337 |
. 2
|
| 10 | eqidd 2208 |
. . . . 5
| |
| 11 | eqidd 2208 |
. . . . 5
| |
| 12 | 10, 11 | jca 306 |
. . . 4
|
| 13 | 12 | orcd 735 |
. . 3
|
| 14 | fn0g 13322 |
. . . . . 6
| |
| 15 | elex 2788 |
. . . . . 6
| |
| 16 | funfvex 5616 |
. . . . . . 7
| |
| 17 | 16 | funfni 5395 |
. . . . . 6
|
| 18 | 14, 15, 17 | sylancr 414 |
. . . . 5
|
| 19 | 2, 18 | eqeltrid 2294 |
. . . 4
|
| 20 | eueq 2951 |
. . . . . 6
| |
| 21 | eqid 2207 |
. . . . . . . . 9
| |
| 22 | 21 | biantrur 303 |
. . . . . . . 8
|
| 23 | eluzfz1 10188 |
. . . . . . . . . . . . . 14
| |
| 24 | n0i 3474 |
. . . . . . . . . . . . . 14
| |
| 25 | 23, 24 | syl 14 |
. . . . . . . . . . . . 13
|
| 26 | 25 | neqcomd 2212 |
. . . . . . . . . . . 12
|
| 27 | 26 | intnanrd 934 |
. . . . . . . . . . 11
|
| 28 | 27 | nrex 2600 |
. . . . . . . . . 10
|
| 29 | 28 | nex 1524 |
. . . . . . . . 9
|
| 30 | 29 | biorfi 748 |
. . . . . . . 8
|
| 31 | 22, 30 | bitri 184 |
. . . . . . 7
|
| 32 | 31 | eubii 2064 |
. . . . . 6
|
| 33 | 20, 32 | bitri 184 |
. . . . 5
|
| 34 | 19, 33 | sylib 122 |
. . . 4
|
| 35 | eqeq1 2214 |
. . . . . . 7
| |
| 36 | 35 | anbi2d 464 |
. . . . . 6
|
| 37 | eqeq1 2214 |
. . . . . . . . 9
| |
| 38 | 37 | anbi2d 464 |
. . . . . . . 8
|
| 39 | 38 | rexbidv 2509 |
. . . . . . 7
|
| 40 | 39 | exbidv 1849 |
. . . . . 6
|
| 41 | 36, 40 | orbi12d 795 |
. . . . 5
|
| 42 | 41 | iota2 5280 |
. . . 4
|
| 43 | 19, 34, 42 | syl2anc 411 |
. . 3
|
| 44 | 13, 43 | mpbid 147 |
. 2
|
| 45 | 9, 44 | eqtrd 2240 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 ax-pre-ltirr 8072 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-neg 8281 df-inn 9072 df-z 9408 df-uz 9684 df-fz 10166 df-seqfrec 10630 df-ndx 12950 df-slot 12951 df-base 12953 df-0g 13205 df-igsum 13206 |
| This theorem is referenced by: gsumwsubmcl 13443 gsumwmhm 13445 mulgnn0gsum 13579 gsumfzfsumlem0 14463 |
| Copyright terms: Public domain | W3C validator |