ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumress Unicode version

Theorem gsumress 13342
Description: The group sum in a substructure is the same as the group sum in the original structure. The only requirement on the substructure is that it contain the identity element; neither  G nor 
H need be groups. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
gsumress.b  |-  B  =  ( Base `  G
)
gsumress.o  |-  .+  =  ( +g  `  G )
gsumress.h  |-  H  =  ( Gs  S )
gsumress.g  |-  ( ph  ->  G  e.  V )
gsumress.a  |-  ( ph  ->  A  e.  X )
gsumress.s  |-  ( ph  ->  S  C_  B )
gsumress.f  |-  ( ph  ->  F : A --> S )
gsumress.z  |-  ( ph  ->  .0.  e.  S )
gsumress.c  |-  ( (
ph  /\  x  e.  B )  ->  (
(  .0.  .+  x
)  =  x  /\  ( x  .+  .0.  )  =  x ) )
Assertion
Ref Expression
gsumress  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )
Distinct variable groups:    x, B    x, G    ph, x    x, S    x, H    x,  .+    x,  .0.
Allowed substitution hints:    A( x)    F( x)    V( x)    X( x)

Proof of Theorem gsumress
Dummy variables  m  n  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumress.g . . . . . . . . . 10  |-  ( ph  ->  G  e.  V )
2 gsumress.b . . . . . . . . . . 11  |-  B  =  ( Base `  G
)
3 eqid 2207 . . . . . . . . . . 11  |-  ( 0g
`  G )  =  ( 0g `  G
)
4 gsumress.o . . . . . . . . . . 11  |-  .+  =  ( +g  `  G )
5 eqid 2207 . . . . . . . . . . 11  |-  { y  e.  B  |  A. x  e.  B  (
( y  .+  x
)  =  x  /\  ( x  .+  y )  =  x ) }  =  { y  e.  B  |  A. x  e.  B  ( (
y  .+  x )  =  x  /\  (
x  .+  y )  =  x ) }
62, 3, 4, 5mgmidsssn0 13331 . . . . . . . . . 10  |-  ( G  e.  V  ->  { y  e.  B  |  A. x  e.  B  (
( y  .+  x
)  =  x  /\  ( x  .+  y )  =  x ) } 
C_  { ( 0g
`  G ) } )
71, 6syl 14 . . . . . . . . 9  |-  ( ph  ->  { y  e.  B  |  A. x  e.  B  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x ) }  C_  { ( 0g `  G ) } )
8 oveq1 5974 . . . . . . . . . . . 12  |-  ( y  =  .0.  ->  (
y  .+  x )  =  (  .0.  .+  x
) )
98eqeq1d 2216 . . . . . . . . . . 11  |-  ( y  =  .0.  ->  (
( y  .+  x
)  =  x  <->  (  .0.  .+  x )  =  x ) )
109ovanraleqv 5991 . . . . . . . . . 10  |-  ( y  =  .0.  ->  ( A. x  e.  B  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x )  <->  A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) ) )
11 gsumress.s . . . . . . . . . . 11  |-  ( ph  ->  S  C_  B )
12 gsumress.z . . . . . . . . . . 11  |-  ( ph  ->  .0.  e.  S )
1311, 12sseldd 3202 . . . . . . . . . 10  |-  ( ph  ->  .0.  e.  B )
14 gsumress.c . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  B )  ->  (
(  .0.  .+  x
)  =  x  /\  ( x  .+  .0.  )  =  x ) )
1514ralrimiva 2581 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) )
1610, 13, 15elrabd 2938 . . . . . . . . 9  |-  ( ph  ->  .0.  e.  { y  e.  B  |  A. x  e.  B  (
( y  .+  x
)  =  x  /\  ( x  .+  y )  =  x ) } )
177, 16sseldd 3202 . . . . . . . 8  |-  ( ph  ->  .0.  e.  { ( 0g `  G ) } )
18 elsni 3661 . . . . . . . 8  |-  (  .0. 
e.  { ( 0g
`  G ) }  ->  .0.  =  ( 0g `  G ) )
1917, 18syl 14 . . . . . . 7  |-  ( ph  ->  .0.  =  ( 0g
`  G ) )
20 gsumress.h . . . . . . . . . . . . 13  |-  H  =  ( Gs  S )
2120a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  H  =  ( Gs  S ) )
222a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  B  =  ( Base `  G ) )
2321, 22, 1, 11ressbas2d 13015 . . . . . . . . . . 11  |-  ( ph  ->  S  =  ( Base `  H ) )
2423, 12basmexd 13007 . . . . . . . . . 10  |-  ( ph  ->  H  e.  _V )
25 eqid 2207 . . . . . . . . . . 11  |-  ( Base `  H )  =  (
Base `  H )
26 eqid 2207 . . . . . . . . . . 11  |-  ( 0g
`  H )  =  ( 0g `  H
)
27 eqid 2207 . . . . . . . . . . 11  |-  ( +g  `  H )  =  ( +g  `  H )
28 eqid 2207 . . . . . . . . . . 11  |-  { y  e.  ( Base `  H
)  |  A. x  e.  ( Base `  H
) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) }  =  { y  e.  (
Base `  H )  |  A. x  e.  (
Base `  H )
( ( y ( +g  `  H ) x )  =  x  /\  ( x ( +g  `  H ) y )  =  x ) }
2925, 26, 27, 28mgmidsssn0 13331 . . . . . . . . . 10  |-  ( H  e.  _V  ->  { y  e.  ( Base `  H
)  |  A. x  e.  ( Base `  H
) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) }  C_  { ( 0g `  H
) } )
3024, 29syl 14 . . . . . . . . 9  |-  ( ph  ->  { y  e.  (
Base `  H )  |  A. x  e.  (
Base `  H )
( ( y ( +g  `  H ) x )  =  x  /\  ( x ( +g  `  H ) y )  =  x ) }  C_  { ( 0g `  H ) } )
319ovanraleqv 5991 . . . . . . . . . . 11  |-  ( y  =  .0.  ->  ( A. x  e.  S  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x )  <->  A. x  e.  S  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) ) )
3211sselda 3201 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  S )  ->  x  e.  B )
3332, 14syldan 282 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  S )  ->  (
(  .0.  .+  x
)  =  x  /\  ( x  .+  .0.  )  =  x ) )
3433ralrimiva 2581 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  S  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) )
3531, 12, 34elrabd 2938 . . . . . . . . . 10  |-  ( ph  ->  .0.  e.  { y  e.  S  |  A. x  e.  S  (
( y  .+  x
)  =  x  /\  ( x  .+  y )  =  x ) } )
364a1i 9 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  .+  =  ( +g  `  G ) )
37 basfn 13005 . . . . . . . . . . . . . . . . . 18  |-  Base  Fn  _V
38 funfvex 5616 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Fun  Base  /\  H  e. 
dom  Base )  ->  ( Base `  H )  e. 
_V )
3938funfni 5395 . . . . . . . . . . . . . . . . . 18  |-  ( (
Base  Fn  _V  /\  H  e.  _V )  ->  ( Base `  H )  e. 
_V )
4037, 24, 39sylancr 414 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( Base `  H
)  e.  _V )
4123, 40eqeltrd 2284 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  S  e.  _V )
4221, 36, 41, 1ressplusgd 13076 . . . . . . . . . . . . . . 15  |-  ( ph  ->  .+  =  ( +g  `  H ) )
4342oveqd 5984 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( y  .+  x
)  =  ( y ( +g  `  H
) x ) )
4443eqeq1d 2216 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( y  .+  x )  =  x  <-> 
( y ( +g  `  H ) x )  =  x ) )
4542oveqd 5984 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  .+  y
)  =  ( x ( +g  `  H
) y ) )
4645eqeq1d 2216 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( x  .+  y )  =  x  <-> 
( x ( +g  `  H ) y )  =  x ) )
4744, 46anbi12d 473 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( y 
.+  x )  =  x  /\  ( x 
.+  y )  =  x )  <->  ( (
y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) ) )
4823, 47raleqbidv 2721 . . . . . . . . . . 11  |-  ( ph  ->  ( A. x  e.  S  ( ( y 
.+  x )  =  x  /\  ( x 
.+  y )  =  x )  <->  A. x  e.  ( Base `  H
) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) ) )
4923, 48rabeqbidv 2771 . . . . . . . . . 10  |-  ( ph  ->  { y  e.  S  |  A. x  e.  S  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x ) }  =  {
y  e.  ( Base `  H )  |  A. x  e.  ( Base `  H ) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) } )
5035, 49eleqtrd 2286 . . . . . . . . 9  |-  ( ph  ->  .0.  e.  { y  e.  ( Base `  H
)  |  A. x  e.  ( Base `  H
) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) } )
5130, 50sseldd 3202 . . . . . . . 8  |-  ( ph  ->  .0.  e.  { ( 0g `  H ) } )
52 elsni 3661 . . . . . . . 8  |-  (  .0. 
e.  { ( 0g
`  H ) }  ->  .0.  =  ( 0g `  H ) )
5351, 52syl 14 . . . . . . 7  |-  ( ph  ->  .0.  =  ( 0g
`  H ) )
5419, 53eqtr3d 2242 . . . . . 6  |-  ( ph  ->  ( 0g `  G
)  =  ( 0g
`  H ) )
5554eqeq2d 2219 . . . . 5  |-  ( ph  ->  ( z  =  ( 0g `  G )  <-> 
z  =  ( 0g
`  H ) ) )
5655anbi2d 464 . . . 4  |-  ( ph  ->  ( ( A  =  (/)  /\  z  =  ( 0g `  G ) )  <->  ( A  =  (/)  /\  z  =  ( 0g `  H ) ) ) )
5742seqeq2d 10636 . . . . . . . . 9  |-  ( ph  ->  seq m (  .+  ,  F )  =  seq m ( ( +g  `  H ) ,  F
) )
5857fveq1d 5601 . . . . . . . 8  |-  ( ph  ->  (  seq m ( 
.+  ,  F ) `
 n )  =  (  seq m ( ( +g  `  H
) ,  F ) `
 n ) )
5958eqeq2d 2219 . . . . . . 7  |-  ( ph  ->  ( z  =  (  seq m (  .+  ,  F ) `  n
)  <->  z  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) )
6059anbi2d 464 . . . . . 6  |-  ( ph  ->  ( ( A  =  ( m ... n
)  /\  z  =  (  seq m (  .+  ,  F ) `  n
) )  <->  ( A  =  ( m ... n )  /\  z  =  (  seq m
( ( +g  `  H
) ,  F ) `
 n ) ) ) )
6160rexbidv 2509 . . . . 5  |-  ( ph  ->  ( E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) )  <->  E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
6261exbidv 1849 . . . 4  |-  ( ph  ->  ( E. m E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  z  =  (  seq m
(  .+  ,  F
) `  n )
)  <->  E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
6356, 62orbi12d 795 . . 3  |-  ( ph  ->  ( ( ( A  =  (/)  /\  z  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) ) )  <->  ( ( A  =  (/)  /\  z  =  ( 0g `  H ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) ) )
6463iotabidv 5273 . 2  |-  ( ph  ->  ( iota z ( ( A  =  (/)  /\  z  =  ( 0g
`  G ) )  \/  E. m E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  z  =  (  seq m
(  .+  ,  F
) `  n )
) ) )  =  ( iota z ( ( A  =  (/)  /\  z  =  ( 0g
`  H ) )  \/  E. m E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  z  =  (  seq m
( ( +g  `  H
) ,  F ) `
 n ) ) ) ) )
65 gsumress.a . . 3  |-  ( ph  ->  A  e.  X )
66 gsumress.f . . . 4  |-  ( ph  ->  F : A --> S )
6766, 11fssd 5458 . . 3  |-  ( ph  ->  F : A --> B )
682, 3, 4, 1, 65, 67igsumval 13337 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  ( iota z ( ( A  =  (/)  /\  z  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
6923feq3d 5434 . . . 4  |-  ( ph  ->  ( F : A --> S 
<->  F : A --> ( Base `  H ) ) )
7066, 69mpbid 147 . . 3  |-  ( ph  ->  F : A --> ( Base `  H ) )
7125, 26, 27, 24, 65, 70igsumval 13337 . 2  |-  ( ph  ->  ( H  gsumg  F )  =  ( iota z ( ( A  =  (/)  /\  z  =  ( 0g `  H ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) ) )
7264, 68, 713eqtr4d 2250 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373   E.wex 1516    e. wcel 2178   A.wral 2486   E.wrex 2487   {crab 2490   _Vcvv 2776    C_ wss 3174   (/)c0 3468   {csn 3643   iotacio 5249    Fn wfn 5285   -->wf 5286   ` cfv 5290  (class class class)co 5967   ZZ>=cuz 9683   ...cfz 10165    seqcseq 10629   Basecbs 12947   ↾s cress 12948   +g cplusg 13024   0gc0g 13203    gsumg cgsu 13204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-neg 8281  df-inn 9072  df-2 9130  df-z 9408  df-uz 9684  df-seqfrec 10630  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-0g 13205  df-igsum 13206
This theorem is referenced by:  gsumsubm  13441
  Copyright terms: Public domain W3C validator