ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumress Unicode version

Theorem gsumress 13423
Description: The group sum in a substructure is the same as the group sum in the original structure. The only requirement on the substructure is that it contain the identity element; neither  G nor 
H need be groups. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
gsumress.b  |-  B  =  ( Base `  G
)
gsumress.o  |-  .+  =  ( +g  `  G )
gsumress.h  |-  H  =  ( Gs  S )
gsumress.g  |-  ( ph  ->  G  e.  V )
gsumress.a  |-  ( ph  ->  A  e.  X )
gsumress.s  |-  ( ph  ->  S  C_  B )
gsumress.f  |-  ( ph  ->  F : A --> S )
gsumress.z  |-  ( ph  ->  .0.  e.  S )
gsumress.c  |-  ( (
ph  /\  x  e.  B )  ->  (
(  .0.  .+  x
)  =  x  /\  ( x  .+  .0.  )  =  x ) )
Assertion
Ref Expression
gsumress  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )
Distinct variable groups:    x, B    x, G    ph, x    x, S    x, H    x,  .+    x,  .0.
Allowed substitution hints:    A( x)    F( x)    V( x)    X( x)

Proof of Theorem gsumress
Dummy variables  m  n  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumress.g . . . . . . . . . 10  |-  ( ph  ->  G  e.  V )
2 gsumress.b . . . . . . . . . . 11  |-  B  =  ( Base `  G
)
3 eqid 2229 . . . . . . . . . . 11  |-  ( 0g
`  G )  =  ( 0g `  G
)
4 gsumress.o . . . . . . . . . . 11  |-  .+  =  ( +g  `  G )
5 eqid 2229 . . . . . . . . . . 11  |-  { y  e.  B  |  A. x  e.  B  (
( y  .+  x
)  =  x  /\  ( x  .+  y )  =  x ) }  =  { y  e.  B  |  A. x  e.  B  ( (
y  .+  x )  =  x  /\  (
x  .+  y )  =  x ) }
62, 3, 4, 5mgmidsssn0 13412 . . . . . . . . . 10  |-  ( G  e.  V  ->  { y  e.  B  |  A. x  e.  B  (
( y  .+  x
)  =  x  /\  ( x  .+  y )  =  x ) } 
C_  { ( 0g
`  G ) } )
71, 6syl 14 . . . . . . . . 9  |-  ( ph  ->  { y  e.  B  |  A. x  e.  B  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x ) }  C_  { ( 0g `  G ) } )
8 oveq1 6007 . . . . . . . . . . . 12  |-  ( y  =  .0.  ->  (
y  .+  x )  =  (  .0.  .+  x
) )
98eqeq1d 2238 . . . . . . . . . . 11  |-  ( y  =  .0.  ->  (
( y  .+  x
)  =  x  <->  (  .0.  .+  x )  =  x ) )
109ovanraleqv 6024 . . . . . . . . . 10  |-  ( y  =  .0.  ->  ( A. x  e.  B  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x )  <->  A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) ) )
11 gsumress.s . . . . . . . . . . 11  |-  ( ph  ->  S  C_  B )
12 gsumress.z . . . . . . . . . . 11  |-  ( ph  ->  .0.  e.  S )
1311, 12sseldd 3225 . . . . . . . . . 10  |-  ( ph  ->  .0.  e.  B )
14 gsumress.c . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  B )  ->  (
(  .0.  .+  x
)  =  x  /\  ( x  .+  .0.  )  =  x ) )
1514ralrimiva 2603 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) )
1610, 13, 15elrabd 2961 . . . . . . . . 9  |-  ( ph  ->  .0.  e.  { y  e.  B  |  A. x  e.  B  (
( y  .+  x
)  =  x  /\  ( x  .+  y )  =  x ) } )
177, 16sseldd 3225 . . . . . . . 8  |-  ( ph  ->  .0.  e.  { ( 0g `  G ) } )
18 elsni 3684 . . . . . . . 8  |-  (  .0. 
e.  { ( 0g
`  G ) }  ->  .0.  =  ( 0g `  G ) )
1917, 18syl 14 . . . . . . 7  |-  ( ph  ->  .0.  =  ( 0g
`  G ) )
20 gsumress.h . . . . . . . . . . . . 13  |-  H  =  ( Gs  S )
2120a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  H  =  ( Gs  S ) )
222a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  B  =  ( Base `  G ) )
2321, 22, 1, 11ressbas2d 13096 . . . . . . . . . . 11  |-  ( ph  ->  S  =  ( Base `  H ) )
2423, 12basmexd 13088 . . . . . . . . . 10  |-  ( ph  ->  H  e.  _V )
25 eqid 2229 . . . . . . . . . . 11  |-  ( Base `  H )  =  (
Base `  H )
26 eqid 2229 . . . . . . . . . . 11  |-  ( 0g
`  H )  =  ( 0g `  H
)
27 eqid 2229 . . . . . . . . . . 11  |-  ( +g  `  H )  =  ( +g  `  H )
28 eqid 2229 . . . . . . . . . . 11  |-  { y  e.  ( Base `  H
)  |  A. x  e.  ( Base `  H
) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) }  =  { y  e.  (
Base `  H )  |  A. x  e.  (
Base `  H )
( ( y ( +g  `  H ) x )  =  x  /\  ( x ( +g  `  H ) y )  =  x ) }
2925, 26, 27, 28mgmidsssn0 13412 . . . . . . . . . 10  |-  ( H  e.  _V  ->  { y  e.  ( Base `  H
)  |  A. x  e.  ( Base `  H
) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) }  C_  { ( 0g `  H
) } )
3024, 29syl 14 . . . . . . . . 9  |-  ( ph  ->  { y  e.  (
Base `  H )  |  A. x  e.  (
Base `  H )
( ( y ( +g  `  H ) x )  =  x  /\  ( x ( +g  `  H ) y )  =  x ) }  C_  { ( 0g `  H ) } )
319ovanraleqv 6024 . . . . . . . . . . 11  |-  ( y  =  .0.  ->  ( A. x  e.  S  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x )  <->  A. x  e.  S  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) ) )
3211sselda 3224 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  S )  ->  x  e.  B )
3332, 14syldan 282 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  S )  ->  (
(  .0.  .+  x
)  =  x  /\  ( x  .+  .0.  )  =  x ) )
3433ralrimiva 2603 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  S  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) )
3531, 12, 34elrabd 2961 . . . . . . . . . 10  |-  ( ph  ->  .0.  e.  { y  e.  S  |  A. x  e.  S  (
( y  .+  x
)  =  x  /\  ( x  .+  y )  =  x ) } )
364a1i 9 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  .+  =  ( +g  `  G ) )
37 basfn 13086 . . . . . . . . . . . . . . . . . 18  |-  Base  Fn  _V
38 funfvex 5643 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Fun  Base  /\  H  e. 
dom  Base )  ->  ( Base `  H )  e. 
_V )
3938funfni 5422 . . . . . . . . . . . . . . . . . 18  |-  ( (
Base  Fn  _V  /\  H  e.  _V )  ->  ( Base `  H )  e. 
_V )
4037, 24, 39sylancr 414 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( Base `  H
)  e.  _V )
4123, 40eqeltrd 2306 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  S  e.  _V )
4221, 36, 41, 1ressplusgd 13157 . . . . . . . . . . . . . . 15  |-  ( ph  ->  .+  =  ( +g  `  H ) )
4342oveqd 6017 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( y  .+  x
)  =  ( y ( +g  `  H
) x ) )
4443eqeq1d 2238 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( y  .+  x )  =  x  <-> 
( y ( +g  `  H ) x )  =  x ) )
4542oveqd 6017 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  .+  y
)  =  ( x ( +g  `  H
) y ) )
4645eqeq1d 2238 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( x  .+  y )  =  x  <-> 
( x ( +g  `  H ) y )  =  x ) )
4744, 46anbi12d 473 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( y 
.+  x )  =  x  /\  ( x 
.+  y )  =  x )  <->  ( (
y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) ) )
4823, 47raleqbidv 2744 . . . . . . . . . . 11  |-  ( ph  ->  ( A. x  e.  S  ( ( y 
.+  x )  =  x  /\  ( x 
.+  y )  =  x )  <->  A. x  e.  ( Base `  H
) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) ) )
4923, 48rabeqbidv 2794 . . . . . . . . . 10  |-  ( ph  ->  { y  e.  S  |  A. x  e.  S  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x ) }  =  {
y  e.  ( Base `  H )  |  A. x  e.  ( Base `  H ) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) } )
5035, 49eleqtrd 2308 . . . . . . . . 9  |-  ( ph  ->  .0.  e.  { y  e.  ( Base `  H
)  |  A. x  e.  ( Base `  H
) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) } )
5130, 50sseldd 3225 . . . . . . . 8  |-  ( ph  ->  .0.  e.  { ( 0g `  H ) } )
52 elsni 3684 . . . . . . . 8  |-  (  .0. 
e.  { ( 0g
`  H ) }  ->  .0.  =  ( 0g `  H ) )
5351, 52syl 14 . . . . . . 7  |-  ( ph  ->  .0.  =  ( 0g
`  H ) )
5419, 53eqtr3d 2264 . . . . . 6  |-  ( ph  ->  ( 0g `  G
)  =  ( 0g
`  H ) )
5554eqeq2d 2241 . . . . 5  |-  ( ph  ->  ( z  =  ( 0g `  G )  <-> 
z  =  ( 0g
`  H ) ) )
5655anbi2d 464 . . . 4  |-  ( ph  ->  ( ( A  =  (/)  /\  z  =  ( 0g `  G ) )  <->  ( A  =  (/)  /\  z  =  ( 0g `  H ) ) ) )
5742seqeq2d 10671 . . . . . . . . 9  |-  ( ph  ->  seq m (  .+  ,  F )  =  seq m ( ( +g  `  H ) ,  F
) )
5857fveq1d 5628 . . . . . . . 8  |-  ( ph  ->  (  seq m ( 
.+  ,  F ) `
 n )  =  (  seq m ( ( +g  `  H
) ,  F ) `
 n ) )
5958eqeq2d 2241 . . . . . . 7  |-  ( ph  ->  ( z  =  (  seq m (  .+  ,  F ) `  n
)  <->  z  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) )
6059anbi2d 464 . . . . . 6  |-  ( ph  ->  ( ( A  =  ( m ... n
)  /\  z  =  (  seq m (  .+  ,  F ) `  n
) )  <->  ( A  =  ( m ... n )  /\  z  =  (  seq m
( ( +g  `  H
) ,  F ) `
 n ) ) ) )
6160rexbidv 2531 . . . . 5  |-  ( ph  ->  ( E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) )  <->  E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
6261exbidv 1871 . . . 4  |-  ( ph  ->  ( E. m E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  z  =  (  seq m
(  .+  ,  F
) `  n )
)  <->  E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
6356, 62orbi12d 798 . . 3  |-  ( ph  ->  ( ( ( A  =  (/)  /\  z  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) ) )  <->  ( ( A  =  (/)  /\  z  =  ( 0g `  H ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) ) )
6463iotabidv 5300 . 2  |-  ( ph  ->  ( iota z ( ( A  =  (/)  /\  z  =  ( 0g
`  G ) )  \/  E. m E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  z  =  (  seq m
(  .+  ,  F
) `  n )
) ) )  =  ( iota z ( ( A  =  (/)  /\  z  =  ( 0g
`  H ) )  \/  E. m E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  z  =  (  seq m
( ( +g  `  H
) ,  F ) `
 n ) ) ) ) )
65 gsumress.a . . 3  |-  ( ph  ->  A  e.  X )
66 gsumress.f . . . 4  |-  ( ph  ->  F : A --> S )
6766, 11fssd 5485 . . 3  |-  ( ph  ->  F : A --> B )
682, 3, 4, 1, 65, 67igsumval 13418 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  ( iota z ( ( A  =  (/)  /\  z  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
6923feq3d 5461 . . . 4  |-  ( ph  ->  ( F : A --> S 
<->  F : A --> ( Base `  H ) ) )
7066, 69mpbid 147 . . 3  |-  ( ph  ->  F : A --> ( Base `  H ) )
7125, 26, 27, 24, 65, 70igsumval 13418 . 2  |-  ( ph  ->  ( H  gsumg  F )  =  ( iota z ( ( A  =  (/)  /\  z  =  ( 0g `  H ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) ) )
7264, 68, 713eqtr4d 2272 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508   E.wrex 2509   {crab 2512   _Vcvv 2799    C_ wss 3197   (/)c0 3491   {csn 3666   iotacio 5275    Fn wfn 5312   -->wf 5313   ` cfv 5317  (class class class)co 6000   ZZ>=cuz 9718   ...cfz 10200    seqcseq 10664   Basecbs 13027   ↾s cress 13028   +g cplusg 13105   0gc0g 13284    gsumg cgsu 13285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-neg 8316  df-inn 9107  df-2 9165  df-z 9443  df-uz 9719  df-seqfrec 10665  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-0g 13286  df-igsum 13287
This theorem is referenced by:  gsumsubm  13522
  Copyright terms: Public domain W3C validator