ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumress Unicode version

Theorem gsumress 13227
Description: The group sum in a substructure is the same as the group sum in the original structure. The only requirement on the substructure is that it contain the identity element; neither  G nor 
H need be groups. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
gsumress.b  |-  B  =  ( Base `  G
)
gsumress.o  |-  .+  =  ( +g  `  G )
gsumress.h  |-  H  =  ( Gs  S )
gsumress.g  |-  ( ph  ->  G  e.  V )
gsumress.a  |-  ( ph  ->  A  e.  X )
gsumress.s  |-  ( ph  ->  S  C_  B )
gsumress.f  |-  ( ph  ->  F : A --> S )
gsumress.z  |-  ( ph  ->  .0.  e.  S )
gsumress.c  |-  ( (
ph  /\  x  e.  B )  ->  (
(  .0.  .+  x
)  =  x  /\  ( x  .+  .0.  )  =  x ) )
Assertion
Ref Expression
gsumress  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )
Distinct variable groups:    x, B    x, G    ph, x    x, S    x, H    x,  .+    x,  .0.
Allowed substitution hints:    A( x)    F( x)    V( x)    X( x)

Proof of Theorem gsumress
Dummy variables  m  n  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumress.g . . . . . . . . . 10  |-  ( ph  ->  G  e.  V )
2 gsumress.b . . . . . . . . . . 11  |-  B  =  ( Base `  G
)
3 eqid 2205 . . . . . . . . . . 11  |-  ( 0g
`  G )  =  ( 0g `  G
)
4 gsumress.o . . . . . . . . . . 11  |-  .+  =  ( +g  `  G )
5 eqid 2205 . . . . . . . . . . 11  |-  { y  e.  B  |  A. x  e.  B  (
( y  .+  x
)  =  x  /\  ( x  .+  y )  =  x ) }  =  { y  e.  B  |  A. x  e.  B  ( (
y  .+  x )  =  x  /\  (
x  .+  y )  =  x ) }
62, 3, 4, 5mgmidsssn0 13216 . . . . . . . . . 10  |-  ( G  e.  V  ->  { y  e.  B  |  A. x  e.  B  (
( y  .+  x
)  =  x  /\  ( x  .+  y )  =  x ) } 
C_  { ( 0g
`  G ) } )
71, 6syl 14 . . . . . . . . 9  |-  ( ph  ->  { y  e.  B  |  A. x  e.  B  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x ) }  C_  { ( 0g `  G ) } )
8 oveq1 5951 . . . . . . . . . . . 12  |-  ( y  =  .0.  ->  (
y  .+  x )  =  (  .0.  .+  x
) )
98eqeq1d 2214 . . . . . . . . . . 11  |-  ( y  =  .0.  ->  (
( y  .+  x
)  =  x  <->  (  .0.  .+  x )  =  x ) )
109ovanraleqv 5968 . . . . . . . . . 10  |-  ( y  =  .0.  ->  ( A. x  e.  B  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x )  <->  A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) ) )
11 gsumress.s . . . . . . . . . . 11  |-  ( ph  ->  S  C_  B )
12 gsumress.z . . . . . . . . . . 11  |-  ( ph  ->  .0.  e.  S )
1311, 12sseldd 3194 . . . . . . . . . 10  |-  ( ph  ->  .0.  e.  B )
14 gsumress.c . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  B )  ->  (
(  .0.  .+  x
)  =  x  /\  ( x  .+  .0.  )  =  x ) )
1514ralrimiva 2579 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) )
1610, 13, 15elrabd 2931 . . . . . . . . 9  |-  ( ph  ->  .0.  e.  { y  e.  B  |  A. x  e.  B  (
( y  .+  x
)  =  x  /\  ( x  .+  y )  =  x ) } )
177, 16sseldd 3194 . . . . . . . 8  |-  ( ph  ->  .0.  e.  { ( 0g `  G ) } )
18 elsni 3651 . . . . . . . 8  |-  (  .0. 
e.  { ( 0g
`  G ) }  ->  .0.  =  ( 0g `  G ) )
1917, 18syl 14 . . . . . . 7  |-  ( ph  ->  .0.  =  ( 0g
`  G ) )
20 gsumress.h . . . . . . . . . . . . 13  |-  H  =  ( Gs  S )
2120a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  H  =  ( Gs  S ) )
222a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  B  =  ( Base `  G ) )
2321, 22, 1, 11ressbas2d 12900 . . . . . . . . . . 11  |-  ( ph  ->  S  =  ( Base `  H ) )
2423, 12basmexd 12892 . . . . . . . . . 10  |-  ( ph  ->  H  e.  _V )
25 eqid 2205 . . . . . . . . . . 11  |-  ( Base `  H )  =  (
Base `  H )
26 eqid 2205 . . . . . . . . . . 11  |-  ( 0g
`  H )  =  ( 0g `  H
)
27 eqid 2205 . . . . . . . . . . 11  |-  ( +g  `  H )  =  ( +g  `  H )
28 eqid 2205 . . . . . . . . . . 11  |-  { y  e.  ( Base `  H
)  |  A. x  e.  ( Base `  H
) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) }  =  { y  e.  (
Base `  H )  |  A. x  e.  (
Base `  H )
( ( y ( +g  `  H ) x )  =  x  /\  ( x ( +g  `  H ) y )  =  x ) }
2925, 26, 27, 28mgmidsssn0 13216 . . . . . . . . . 10  |-  ( H  e.  _V  ->  { y  e.  ( Base `  H
)  |  A. x  e.  ( Base `  H
) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) }  C_  { ( 0g `  H
) } )
3024, 29syl 14 . . . . . . . . 9  |-  ( ph  ->  { y  e.  (
Base `  H )  |  A. x  e.  (
Base `  H )
( ( y ( +g  `  H ) x )  =  x  /\  ( x ( +g  `  H ) y )  =  x ) }  C_  { ( 0g `  H ) } )
319ovanraleqv 5968 . . . . . . . . . . 11  |-  ( y  =  .0.  ->  ( A. x  e.  S  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x )  <->  A. x  e.  S  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) ) )
3211sselda 3193 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  S )  ->  x  e.  B )
3332, 14syldan 282 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  S )  ->  (
(  .0.  .+  x
)  =  x  /\  ( x  .+  .0.  )  =  x ) )
3433ralrimiva 2579 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  S  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) )
3531, 12, 34elrabd 2931 . . . . . . . . . 10  |-  ( ph  ->  .0.  e.  { y  e.  S  |  A. x  e.  S  (
( y  .+  x
)  =  x  /\  ( x  .+  y )  =  x ) } )
364a1i 9 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  .+  =  ( +g  `  G ) )
37 basfn 12890 . . . . . . . . . . . . . . . . . 18  |-  Base  Fn  _V
38 funfvex 5593 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Fun  Base  /\  H  e. 
dom  Base )  ->  ( Base `  H )  e. 
_V )
3938funfni 5376 . . . . . . . . . . . . . . . . . 18  |-  ( (
Base  Fn  _V  /\  H  e.  _V )  ->  ( Base `  H )  e. 
_V )
4037, 24, 39sylancr 414 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( Base `  H
)  e.  _V )
4123, 40eqeltrd 2282 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  S  e.  _V )
4221, 36, 41, 1ressplusgd 12961 . . . . . . . . . . . . . . 15  |-  ( ph  ->  .+  =  ( +g  `  H ) )
4342oveqd 5961 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( y  .+  x
)  =  ( y ( +g  `  H
) x ) )
4443eqeq1d 2214 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( y  .+  x )  =  x  <-> 
( y ( +g  `  H ) x )  =  x ) )
4542oveqd 5961 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  .+  y
)  =  ( x ( +g  `  H
) y ) )
4645eqeq1d 2214 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( x  .+  y )  =  x  <-> 
( x ( +g  `  H ) y )  =  x ) )
4744, 46anbi12d 473 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( y 
.+  x )  =  x  /\  ( x 
.+  y )  =  x )  <->  ( (
y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) ) )
4823, 47raleqbidv 2718 . . . . . . . . . . 11  |-  ( ph  ->  ( A. x  e.  S  ( ( y 
.+  x )  =  x  /\  ( x 
.+  y )  =  x )  <->  A. x  e.  ( Base `  H
) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) ) )
4923, 48rabeqbidv 2767 . . . . . . . . . 10  |-  ( ph  ->  { y  e.  S  |  A. x  e.  S  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x ) }  =  {
y  e.  ( Base `  H )  |  A. x  e.  ( Base `  H ) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) } )
5035, 49eleqtrd 2284 . . . . . . . . 9  |-  ( ph  ->  .0.  e.  { y  e.  ( Base `  H
)  |  A. x  e.  ( Base `  H
) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) } )
5130, 50sseldd 3194 . . . . . . . 8  |-  ( ph  ->  .0.  e.  { ( 0g `  H ) } )
52 elsni 3651 . . . . . . . 8  |-  (  .0. 
e.  { ( 0g
`  H ) }  ->  .0.  =  ( 0g `  H ) )
5351, 52syl 14 . . . . . . 7  |-  ( ph  ->  .0.  =  ( 0g
`  H ) )
5419, 53eqtr3d 2240 . . . . . 6  |-  ( ph  ->  ( 0g `  G
)  =  ( 0g
`  H ) )
5554eqeq2d 2217 . . . . 5  |-  ( ph  ->  ( z  =  ( 0g `  G )  <-> 
z  =  ( 0g
`  H ) ) )
5655anbi2d 464 . . . 4  |-  ( ph  ->  ( ( A  =  (/)  /\  z  =  ( 0g `  G ) )  <->  ( A  =  (/)  /\  z  =  ( 0g `  H ) ) ) )
5742seqeq2d 10599 . . . . . . . . 9  |-  ( ph  ->  seq m (  .+  ,  F )  =  seq m ( ( +g  `  H ) ,  F
) )
5857fveq1d 5578 . . . . . . . 8  |-  ( ph  ->  (  seq m ( 
.+  ,  F ) `
 n )  =  (  seq m ( ( +g  `  H
) ,  F ) `
 n ) )
5958eqeq2d 2217 . . . . . . 7  |-  ( ph  ->  ( z  =  (  seq m (  .+  ,  F ) `  n
)  <->  z  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) )
6059anbi2d 464 . . . . . 6  |-  ( ph  ->  ( ( A  =  ( m ... n
)  /\  z  =  (  seq m (  .+  ,  F ) `  n
) )  <->  ( A  =  ( m ... n )  /\  z  =  (  seq m
( ( +g  `  H
) ,  F ) `
 n ) ) ) )
6160rexbidv 2507 . . . . 5  |-  ( ph  ->  ( E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) )  <->  E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
6261exbidv 1848 . . . 4  |-  ( ph  ->  ( E. m E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  z  =  (  seq m
(  .+  ,  F
) `  n )
)  <->  E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
6356, 62orbi12d 795 . . 3  |-  ( ph  ->  ( ( ( A  =  (/)  /\  z  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) ) )  <->  ( ( A  =  (/)  /\  z  =  ( 0g `  H ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) ) )
6463iotabidv 5254 . 2  |-  ( ph  ->  ( iota z ( ( A  =  (/)  /\  z  =  ( 0g
`  G ) )  \/  E. m E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  z  =  (  seq m
(  .+  ,  F
) `  n )
) ) )  =  ( iota z ( ( A  =  (/)  /\  z  =  ( 0g
`  H ) )  \/  E. m E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  z  =  (  seq m
( ( +g  `  H
) ,  F ) `
 n ) ) ) ) )
65 gsumress.a . . 3  |-  ( ph  ->  A  e.  X )
66 gsumress.f . . . 4  |-  ( ph  ->  F : A --> S )
6766, 11fssd 5438 . . 3  |-  ( ph  ->  F : A --> B )
682, 3, 4, 1, 65, 67igsumval 13222 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  ( iota z ( ( A  =  (/)  /\  z  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
6923feq3d 5414 . . . 4  |-  ( ph  ->  ( F : A --> S 
<->  F : A --> ( Base `  H ) ) )
7066, 69mpbid 147 . . 3  |-  ( ph  ->  F : A --> ( Base `  H ) )
7125, 26, 27, 24, 65, 70igsumval 13222 . 2  |-  ( ph  ->  ( H  gsumg  F )  =  ( iota z ( ( A  =  (/)  /\  z  =  ( 0g `  H ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) ) )
7264, 68, 713eqtr4d 2248 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373   E.wex 1515    e. wcel 2176   A.wral 2484   E.wrex 2485   {crab 2488   _Vcvv 2772    C_ wss 3166   (/)c0 3460   {csn 3633   iotacio 5230    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5944   ZZ>=cuz 9648   ...cfz 10130    seqcseq 10592   Basecbs 12832   ↾s cress 12833   +g cplusg 12909   0gc0g 13088    gsumg cgsu 13089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-neg 8246  df-inn 9037  df-2 9095  df-z 9373  df-uz 9649  df-seqfrec 10593  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-0g 13090  df-igsum 13091
This theorem is referenced by:  gsumsubm  13326
  Copyright terms: Public domain W3C validator