ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumval2 Unicode version

Theorem gsumval2 12983
Description: Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval2.b  |-  B  =  ( Base `  G
)
gsumval2.p  |-  .+  =  ( +g  `  G )
gsumval2.g  |-  ( ph  ->  G  e.  V )
gsumval2.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
gsumval2.f  |-  ( ph  ->  F : ( M ... N ) --> B )
Assertion
Ref Expression
gsumval2  |-  ( ph  ->  ( G  gsumg  F )  =  (  seq M (  .+  ,  F ) `  N
) )

Proof of Theorem gsumval2
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval2.b . . 3  |-  B  =  ( Base `  G
)
2 eqid 2193 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
3 gsumval2.p . . 3  |-  .+  =  ( +g  `  G )
4 gsumval2.g . . 3  |-  ( ph  ->  G  e.  V )
5 gsumval2.n . . . . 5  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
6 eluzel2 9600 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
75, 6syl 14 . . . 4  |-  ( ph  ->  M  e.  ZZ )
8 eluzelz 9604 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
95, 8syl 14 . . . 4  |-  ( ph  ->  N  e.  ZZ )
107, 9fzfigd 10505 . . 3  |-  ( ph  ->  ( M ... N
)  e.  Fin )
11 gsumval2.f . . 3  |-  ( ph  ->  F : ( M ... N ) --> B )
121, 2, 3, 4, 10, 11igsumval 12976 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  ( iota x ( ( ( M ... N
)  =  (/)  /\  x  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
13 simprr 531 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  x  =  (  seq m (  .+  ,  F ) `  n
) )
14 simprl 529 . . . . . . . . . . . 12  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
( M ... N
)  =  ( m ... n ) )
15 eqcom 2195 . . . . . . . . . . . . . 14  |-  ( ( m ... n )  =  ( M ... N )  <->  ( M ... N )  =  ( m ... n ) )
16 fzopth 10130 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  m
)  ->  ( (
m ... n )  =  ( M ... N
)  <->  ( m  =  M  /\  n  =  N ) ) )
1715, 16bitr3id 194 . . . . . . . . . . . . 13  |-  ( n  e.  ( ZZ>= `  m
)  ->  ( ( M ... N )  =  ( m ... n
)  <->  ( m  =  M  /\  n  =  N ) ) )
1817adantr 276 . . . . . . . . . . . 12  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
( ( M ... N )  =  ( m ... n )  <-> 
( m  =  M  /\  n  =  N ) ) )
1914, 18mpbid 147 . . . . . . . . . . 11  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
( m  =  M  /\  n  =  N ) )
2019simpld 112 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  m  =  M )
2120seqeq1d 10527 . . . . . . . . 9  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  seq m (  .+  ,  F )  =  seq M (  .+  ,  F ) )
2219simprd 114 . . . . . . . . 9  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  n  =  N )
2321, 22fveq12d 5562 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
(  seq m (  .+  ,  F ) `  n
)  =  (  seq M (  .+  ,  F ) `  N
) )
2413, 23eqtrd 2226 . . . . . . 7  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  x  =  (  seq M (  .+  ,  F ) `  N
) )
2524rexlimiva 2606 . . . . . 6  |-  ( E. n  e.  ( ZZ>= `  m ) ( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
)  ->  x  =  (  seq M (  .+  ,  F ) `  N
) )
2625exlimiv 1609 . . . . 5  |-  ( E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  ->  x  =  (  seq M ( 
.+  ,  F ) `
 N ) )
277elexd 2773 . . . . . . . 8  |-  ( ph  ->  M  e.  _V )
2827adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  M  e.  _V )
295adantr 276 . . . . . . . 8  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  N  e.  ( ZZ>= `  M )
)
30 oveq2 5927 . . . . . . . . . . 11  |-  ( n  =  N  ->  ( M ... n )  =  ( M ... N
) )
3130eqeq2d 2205 . . . . . . . . . 10  |-  ( n  =  N  ->  (
( M ... N
)  =  ( M ... n )  <->  ( M ... N )  =  ( M ... N ) ) )
32 fveq2 5555 . . . . . . . . . . 11  |-  ( n  =  N  ->  (  seq M (  .+  ,  F ) `  n
)  =  (  seq M (  .+  ,  F ) `  N
) )
3332eqeq2d 2205 . . . . . . . . . 10  |-  ( n  =  N  ->  (
x  =  (  seq M (  .+  ,  F ) `  n
)  <->  x  =  (  seq M (  .+  ,  F ) `  N
) ) )
3431, 33anbi12d 473 . . . . . . . . 9  |-  ( n  =  N  ->  (
( ( M ... N )  =  ( M ... n )  /\  x  =  (  seq M (  .+  ,  F ) `  n
) )  <->  ( ( M ... N )  =  ( M ... N
)  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) ) )
3534adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) )  /\  n  =  N )  ->  ( (
( M ... N
)  =  ( M ... n )  /\  x  =  (  seq M (  .+  ,  F ) `  n
) )  <->  ( ( M ... N )  =  ( M ... N
)  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) ) )
36 eqidd 2194 . . . . . . . . 9  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  ( M ... N )  =  ( M ... N
) )
37 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  x  =  (  seq M ( 
.+  ,  F ) `
 N ) )
3836, 37jca 306 . . . . . . . 8  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  (
( M ... N
)  =  ( M ... N )  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) )
3929, 35, 38rspcedvd 2871 . . . . . . 7  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  E. n  e.  ( ZZ>= `  M )
( ( M ... N )  =  ( M ... n )  /\  x  =  (  seq M (  .+  ,  F ) `  n
) ) )
40 fveq2 5555 . . . . . . . 8  |-  ( m  =  M  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  M )
)
41 oveq1 5926 . . . . . . . . . 10  |-  ( m  =  M  ->  (
m ... n )  =  ( M ... n
) )
4241eqeq2d 2205 . . . . . . . . 9  |-  ( m  =  M  ->  (
( M ... N
)  =  ( m ... n )  <->  ( M ... N )  =  ( M ... n ) ) )
43 seqeq1 10524 . . . . . . . . . . 11  |-  ( m  =  M  ->  seq m (  .+  ,  F )  =  seq M (  .+  ,  F ) )
4443fveq1d 5557 . . . . . . . . . 10  |-  ( m  =  M  ->  (  seq m (  .+  ,  F ) `  n
)  =  (  seq M (  .+  ,  F ) `  n
) )
4544eqeq2d 2205 . . . . . . . . 9  |-  ( m  =  M  ->  (
x  =  (  seq m (  .+  ,  F ) `  n
)  <->  x  =  (  seq M (  .+  ,  F ) `  n
) ) )
4642, 45anbi12d 473 . . . . . . . 8  |-  ( m  =  M  ->  (
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  <->  ( ( M ... N )  =  ( M ... n
)  /\  x  =  (  seq M (  .+  ,  F ) `  n
) ) ) )
4740, 46rexeqbidv 2707 . . . . . . 7  |-  ( m  =  M  ->  ( E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  <->  E. n  e.  ( ZZ>= `  M )
( ( M ... N )  =  ( M ... n )  /\  x  =  (  seq M (  .+  ,  F ) `  n
) ) ) )
4828, 39, 47spcedv 2850 . . . . . 6  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  E. m E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )
4948ex 115 . . . . 5  |-  ( ph  ->  ( x  =  (  seq M (  .+  ,  F ) `  N
)  ->  E. m E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
5026, 49impbid2 143 . . . 4  |-  ( ph  ->  ( E. m E. n  e.  ( ZZ>= `  m ) ( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
)  <->  x  =  (  seq M (  .+  ,  F ) `  N
) ) )
51 eluzfz2 10101 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
525, 51syl 14 . . . . . . 7  |-  ( ph  ->  N  e.  ( M ... N ) )
53 n0i 3453 . . . . . . 7  |-  ( N  e.  ( M ... N )  ->  -.  ( M ... N )  =  (/) )
5452, 53syl 14 . . . . . 6  |-  ( ph  ->  -.  ( M ... N )  =  (/) )
5554intnanrd 933 . . . . 5  |-  ( ph  ->  -.  ( ( M ... N )  =  (/)  /\  x  =  ( 0g `  G ) ) )
56 biorf 745 . . . . 5  |-  ( -.  ( ( M ... N )  =  (/)  /\  x  =  ( 0g
`  G ) )  ->  ( E. m E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  <->  ( (
( M ... N
)  =  (/)  /\  x  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
5755, 56syl 14 . . . 4  |-  ( ph  ->  ( E. m E. n  e.  ( ZZ>= `  m ) ( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
)  <->  ( ( ( M ... N )  =  (/)  /\  x  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
5850, 57bitr3d 190 . . 3  |-  ( ph  ->  ( x  =  (  seq M (  .+  ,  F ) `  N
)  <->  ( ( ( M ... N )  =  (/)  /\  x  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
5958iotabidv 5238 . 2  |-  ( ph  ->  ( iota x x  =  (  seq M
(  .+  ,  F
) `  N )
)  =  ( iota
x ( ( ( M ... N )  =  (/)  /\  x  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
60 eqid 2193 . . 3  |-  (  seq M (  .+  ,  F ) `  N
)  =  (  seq M (  .+  ,  F ) `  N
)
61 seqex 10523 . . . . 5  |-  seq M
(  .+  ,  F
)  e.  _V
62 fvexg 5574 . . . . 5  |-  ( (  seq M (  .+  ,  F )  e.  _V  /\  N  e.  ( ZZ>= `  M ) )  -> 
(  seq M (  .+  ,  F ) `  N
)  e.  _V )
6361, 5, 62sylancr 414 . . . 4  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  e. 
_V )
64 eueq 2932 . . . . 5  |-  ( (  seq M (  .+  ,  F ) `  N
)  e.  _V  <->  E! x  x  =  (  seq M (  .+  ,  F ) `  N
) )
6563, 64sylib 122 . . . 4  |-  ( ph  ->  E! x  x  =  (  seq M ( 
.+  ,  F ) `
 N ) )
66 eqeq1 2200 . . . . 5  |-  ( x  =  (  seq M
(  .+  ,  F
) `  N )  ->  ( x  =  (  seq M (  .+  ,  F ) `  N
)  <->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )
6766iota2 5245 . . . 4  |-  ( ( (  seq M ( 
.+  ,  F ) `
 N )  e. 
_V  /\  E! x  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  (
(  seq M (  .+  ,  F ) `  N
)  =  (  seq M (  .+  ,  F ) `  N
)  <->  ( iota x x  =  (  seq M (  .+  ,  F ) `  N
) )  =  (  seq M (  .+  ,  F ) `  N
) ) )
6863, 65, 67syl2anc 411 . . 3  |-  ( ph  ->  ( (  seq M
(  .+  ,  F
) `  N )  =  (  seq M ( 
.+  ,  F ) `
 N )  <->  ( iota x x  =  (  seq M (  .+  ,  F ) `  N
) )  =  (  seq M (  .+  ,  F ) `  N
) ) )
6960, 68mpbii 148 . 2  |-  ( ph  ->  ( iota x x  =  (  seq M
(  .+  ,  F
) `  N )
)  =  (  seq M (  .+  ,  F ) `  N
) )
7012, 59, 693eqtr2d 2232 1  |-  ( ph  ->  ( G  gsumg  F )  =  (  seq M (  .+  ,  F ) `  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364   E.wex 1503   E!weu 2042    e. wcel 2164   E.wrex 2473   _Vcvv 2760   (/)c0 3447   iotacio 5214   -->wf 5251   ` cfv 5255  (class class class)co 5919   Fincfn 6796   ZZcz 9320   ZZ>=cuz 9595   ...cfz 10077    seqcseq 10521   Basecbs 12621   +g cplusg 12698   0gc0g 12870    gsumg cgsu 12871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-1o 6471  df-er 6589  df-en 6797  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078  df-seqfrec 10522  df-ndx 12624  df-slot 12625  df-base 12627  df-0g 12872  df-igsum 12873
This theorem is referenced by:  gsumsplit1r  12984  gsumprval  12985  gsumwsubmcl  13071  gsumwmhm  13073  mulgnngsum  13200  gsumfzconst  13414
  Copyright terms: Public domain W3C validator