ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumval2 Unicode version

Theorem gsumval2 13425
Description: Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval2.b  |-  B  =  ( Base `  G
)
gsumval2.p  |-  .+  =  ( +g  `  G )
gsumval2.g  |-  ( ph  ->  G  e.  V )
gsumval2.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
gsumval2.f  |-  ( ph  ->  F : ( M ... N ) --> B )
Assertion
Ref Expression
gsumval2  |-  ( ph  ->  ( G  gsumg  F )  =  (  seq M (  .+  ,  F ) `  N
) )

Proof of Theorem gsumval2
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval2.b . . 3  |-  B  =  ( Base `  G
)
2 eqid 2229 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
3 gsumval2.p . . 3  |-  .+  =  ( +g  `  G )
4 gsumval2.g . . 3  |-  ( ph  ->  G  e.  V )
5 gsumval2.n . . . . 5  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
6 eluzel2 9723 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
75, 6syl 14 . . . 4  |-  ( ph  ->  M  e.  ZZ )
8 eluzelz 9727 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
95, 8syl 14 . . . 4  |-  ( ph  ->  N  e.  ZZ )
107, 9fzfigd 10648 . . 3  |-  ( ph  ->  ( M ... N
)  e.  Fin )
11 gsumval2.f . . 3  |-  ( ph  ->  F : ( M ... N ) --> B )
121, 2, 3, 4, 10, 11igsumval 13418 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  ( iota x ( ( ( M ... N
)  =  (/)  /\  x  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
13 simprr 531 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  x  =  (  seq m (  .+  ,  F ) `  n
) )
14 simprl 529 . . . . . . . . . . . 12  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
( M ... N
)  =  ( m ... n ) )
15 eqcom 2231 . . . . . . . . . . . . . 14  |-  ( ( m ... n )  =  ( M ... N )  <->  ( M ... N )  =  ( m ... n ) )
16 fzopth 10253 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  m
)  ->  ( (
m ... n )  =  ( M ... N
)  <->  ( m  =  M  /\  n  =  N ) ) )
1715, 16bitr3id 194 . . . . . . . . . . . . 13  |-  ( n  e.  ( ZZ>= `  m
)  ->  ( ( M ... N )  =  ( m ... n
)  <->  ( m  =  M  /\  n  =  N ) ) )
1817adantr 276 . . . . . . . . . . . 12  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
( ( M ... N )  =  ( m ... n )  <-> 
( m  =  M  /\  n  =  N ) ) )
1914, 18mpbid 147 . . . . . . . . . . 11  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
( m  =  M  /\  n  =  N ) )
2019simpld 112 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  m  =  M )
2120seqeq1d 10670 . . . . . . . . 9  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  seq m (  .+  ,  F )  =  seq M (  .+  ,  F ) )
2219simprd 114 . . . . . . . . 9  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  n  =  N )
2321, 22fveq12d 5633 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
(  seq m (  .+  ,  F ) `  n
)  =  (  seq M (  .+  ,  F ) `  N
) )
2413, 23eqtrd 2262 . . . . . . 7  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  x  =  (  seq M (  .+  ,  F ) `  N
) )
2524rexlimiva 2643 . . . . . 6  |-  ( E. n  e.  ( ZZ>= `  m ) ( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
)  ->  x  =  (  seq M (  .+  ,  F ) `  N
) )
2625exlimiv 1644 . . . . 5  |-  ( E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  ->  x  =  (  seq M ( 
.+  ,  F ) `
 N ) )
277elexd 2813 . . . . . . . 8  |-  ( ph  ->  M  e.  _V )
2827adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  M  e.  _V )
295adantr 276 . . . . . . . 8  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  N  e.  ( ZZ>= `  M )
)
30 oveq2 6008 . . . . . . . . . . 11  |-  ( n  =  N  ->  ( M ... n )  =  ( M ... N
) )
3130eqeq2d 2241 . . . . . . . . . 10  |-  ( n  =  N  ->  (
( M ... N
)  =  ( M ... n )  <->  ( M ... N )  =  ( M ... N ) ) )
32 fveq2 5626 . . . . . . . . . . 11  |-  ( n  =  N  ->  (  seq M (  .+  ,  F ) `  n
)  =  (  seq M (  .+  ,  F ) `  N
) )
3332eqeq2d 2241 . . . . . . . . . 10  |-  ( n  =  N  ->  (
x  =  (  seq M (  .+  ,  F ) `  n
)  <->  x  =  (  seq M (  .+  ,  F ) `  N
) ) )
3431, 33anbi12d 473 . . . . . . . . 9  |-  ( n  =  N  ->  (
( ( M ... N )  =  ( M ... n )  /\  x  =  (  seq M (  .+  ,  F ) `  n
) )  <->  ( ( M ... N )  =  ( M ... N
)  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) ) )
3534adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) )  /\  n  =  N )  ->  ( (
( M ... N
)  =  ( M ... n )  /\  x  =  (  seq M (  .+  ,  F ) `  n
) )  <->  ( ( M ... N )  =  ( M ... N
)  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) ) )
36 eqidd 2230 . . . . . . . . 9  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  ( M ... N )  =  ( M ... N
) )
37 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  x  =  (  seq M ( 
.+  ,  F ) `
 N ) )
3836, 37jca 306 . . . . . . . 8  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  (
( M ... N
)  =  ( M ... N )  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) )
3929, 35, 38rspcedvd 2913 . . . . . . 7  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  E. n  e.  ( ZZ>= `  M )
( ( M ... N )  =  ( M ... n )  /\  x  =  (  seq M (  .+  ,  F ) `  n
) ) )
40 fveq2 5626 . . . . . . . 8  |-  ( m  =  M  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  M )
)
41 oveq1 6007 . . . . . . . . . 10  |-  ( m  =  M  ->  (
m ... n )  =  ( M ... n
) )
4241eqeq2d 2241 . . . . . . . . 9  |-  ( m  =  M  ->  (
( M ... N
)  =  ( m ... n )  <->  ( M ... N )  =  ( M ... n ) ) )
43 seqeq1 10667 . . . . . . . . . . 11  |-  ( m  =  M  ->  seq m (  .+  ,  F )  =  seq M (  .+  ,  F ) )
4443fveq1d 5628 . . . . . . . . . 10  |-  ( m  =  M  ->  (  seq m (  .+  ,  F ) `  n
)  =  (  seq M (  .+  ,  F ) `  n
) )
4544eqeq2d 2241 . . . . . . . . 9  |-  ( m  =  M  ->  (
x  =  (  seq m (  .+  ,  F ) `  n
)  <->  x  =  (  seq M (  .+  ,  F ) `  n
) ) )
4642, 45anbi12d 473 . . . . . . . 8  |-  ( m  =  M  ->  (
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  <->  ( ( M ... N )  =  ( M ... n
)  /\  x  =  (  seq M (  .+  ,  F ) `  n
) ) ) )
4740, 46rexeqbidv 2745 . . . . . . 7  |-  ( m  =  M  ->  ( E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  <->  E. n  e.  ( ZZ>= `  M )
( ( M ... N )  =  ( M ... n )  /\  x  =  (  seq M (  .+  ,  F ) `  n
) ) ) )
4828, 39, 47spcedv 2892 . . . . . 6  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  E. m E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )
4948ex 115 . . . . 5  |-  ( ph  ->  ( x  =  (  seq M (  .+  ,  F ) `  N
)  ->  E. m E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
5026, 49impbid2 143 . . . 4  |-  ( ph  ->  ( E. m E. n  e.  ( ZZ>= `  m ) ( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
)  <->  x  =  (  seq M (  .+  ,  F ) `  N
) ) )
51 eluzfz2 10224 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
525, 51syl 14 . . . . . . 7  |-  ( ph  ->  N  e.  ( M ... N ) )
53 n0i 3497 . . . . . . 7  |-  ( N  e.  ( M ... N )  ->  -.  ( M ... N )  =  (/) )
5452, 53syl 14 . . . . . 6  |-  ( ph  ->  -.  ( M ... N )  =  (/) )
5554intnanrd 937 . . . . 5  |-  ( ph  ->  -.  ( ( M ... N )  =  (/)  /\  x  =  ( 0g `  G ) ) )
56 biorf 749 . . . . 5  |-  ( -.  ( ( M ... N )  =  (/)  /\  x  =  ( 0g
`  G ) )  ->  ( E. m E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  <->  ( (
( M ... N
)  =  (/)  /\  x  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
5755, 56syl 14 . . . 4  |-  ( ph  ->  ( E. m E. n  e.  ( ZZ>= `  m ) ( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
)  <->  ( ( ( M ... N )  =  (/)  /\  x  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
5850, 57bitr3d 190 . . 3  |-  ( ph  ->  ( x  =  (  seq M (  .+  ,  F ) `  N
)  <->  ( ( ( M ... N )  =  (/)  /\  x  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
5958iotabidv 5300 . 2  |-  ( ph  ->  ( iota x x  =  (  seq M
(  .+  ,  F
) `  N )
)  =  ( iota
x ( ( ( M ... N )  =  (/)  /\  x  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
60 eqid 2229 . . 3  |-  (  seq M (  .+  ,  F ) `  N
)  =  (  seq M (  .+  ,  F ) `  N
)
61 seqex 10666 . . . . 5  |-  seq M
(  .+  ,  F
)  e.  _V
62 fvexg 5645 . . . . 5  |-  ( (  seq M (  .+  ,  F )  e.  _V  /\  N  e.  ( ZZ>= `  M ) )  -> 
(  seq M (  .+  ,  F ) `  N
)  e.  _V )
6361, 5, 62sylancr 414 . . . 4  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  e. 
_V )
64 eueq 2974 . . . . 5  |-  ( (  seq M (  .+  ,  F ) `  N
)  e.  _V  <->  E! x  x  =  (  seq M (  .+  ,  F ) `  N
) )
6563, 64sylib 122 . . . 4  |-  ( ph  ->  E! x  x  =  (  seq M ( 
.+  ,  F ) `
 N ) )
66 eqeq1 2236 . . . . 5  |-  ( x  =  (  seq M
(  .+  ,  F
) `  N )  ->  ( x  =  (  seq M (  .+  ,  F ) `  N
)  <->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )
6766iota2 5307 . . . 4  |-  ( ( (  seq M ( 
.+  ,  F ) `
 N )  e. 
_V  /\  E! x  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  (
(  seq M (  .+  ,  F ) `  N
)  =  (  seq M (  .+  ,  F ) `  N
)  <->  ( iota x x  =  (  seq M (  .+  ,  F ) `  N
) )  =  (  seq M (  .+  ,  F ) `  N
) ) )
6863, 65, 67syl2anc 411 . . 3  |-  ( ph  ->  ( (  seq M
(  .+  ,  F
) `  N )  =  (  seq M ( 
.+  ,  F ) `
 N )  <->  ( iota x x  =  (  seq M (  .+  ,  F ) `  N
) )  =  (  seq M (  .+  ,  F ) `  N
) ) )
6960, 68mpbii 148 . 2  |-  ( ph  ->  ( iota x x  =  (  seq M
(  .+  ,  F
) `  N )
)  =  (  seq M (  .+  ,  F ) `  N
) )
7012, 59, 693eqtr2d 2268 1  |-  ( ph  ->  ( G  gsumg  F )  =  (  seq M (  .+  ,  F ) `  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395   E.wex 1538   E!weu 2077    e. wcel 2200   E.wrex 2509   _Vcvv 2799   (/)c0 3491   iotacio 5275   -->wf 5313   ` cfv 5317  (class class class)co 6000   Fincfn 6885   ZZcz 9442   ZZ>=cuz 9718   ...cfz 10200    seqcseq 10664   Basecbs 13027   +g cplusg 13105   0gc0g 13284    gsumg cgsu 13285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-seqfrec 10665  df-ndx 13030  df-slot 13031  df-base 13033  df-0g 13286  df-igsum 13287
This theorem is referenced by:  gsumsplit1r  13426  gsumprval  13427  gsumwsubmcl  13524  gsumwmhm  13526  mulgnngsum  13659  gsumfzconst  13873
  Copyright terms: Public domain W3C validator