| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsumval2 | Unicode version | ||
| Description: Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| gsumval2.b |
|
| gsumval2.p |
|
| gsumval2.g |
|
| gsumval2.n |
|
| gsumval2.f |
|
| Ref | Expression |
|---|---|
| gsumval2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumval2.b |
. . 3
| |
| 2 | eqid 2205 |
. . 3
| |
| 3 | gsumval2.p |
. . 3
| |
| 4 | gsumval2.g |
. . 3
| |
| 5 | gsumval2.n |
. . . . 5
| |
| 6 | eluzel2 9653 |
. . . . 5
| |
| 7 | 5, 6 | syl 14 |
. . . 4
|
| 8 | eluzelz 9657 |
. . . . 5
| |
| 9 | 5, 8 | syl 14 |
. . . 4
|
| 10 | 7, 9 | fzfigd 10576 |
. . 3
|
| 11 | gsumval2.f |
. . 3
| |
| 12 | 1, 2, 3, 4, 10, 11 | igsumval 13222 |
. 2
|
| 13 | simprr 531 |
. . . . . . . 8
| |
| 14 | simprl 529 |
. . . . . . . . . . . 12
| |
| 15 | eqcom 2207 |
. . . . . . . . . . . . . 14
| |
| 16 | fzopth 10183 |
. . . . . . . . . . . . . 14
| |
| 17 | 15, 16 | bitr3id 194 |
. . . . . . . . . . . . 13
|
| 18 | 17 | adantr 276 |
. . . . . . . . . . . 12
|
| 19 | 14, 18 | mpbid 147 |
. . . . . . . . . . 11
|
| 20 | 19 | simpld 112 |
. . . . . . . . . 10
|
| 21 | 20 | seqeq1d 10598 |
. . . . . . . . 9
|
| 22 | 19 | simprd 114 |
. . . . . . . . 9
|
| 23 | 21, 22 | fveq12d 5583 |
. . . . . . . 8
|
| 24 | 13, 23 | eqtrd 2238 |
. . . . . . 7
|
| 25 | 24 | rexlimiva 2618 |
. . . . . 6
|
| 26 | 25 | exlimiv 1621 |
. . . . 5
|
| 27 | 7 | elexd 2785 |
. . . . . . . 8
|
| 28 | 27 | adantr 276 |
. . . . . . 7
|
| 29 | 5 | adantr 276 |
. . . . . . . 8
|
| 30 | oveq2 5952 |
. . . . . . . . . . 11
| |
| 31 | 30 | eqeq2d 2217 |
. . . . . . . . . 10
|
| 32 | fveq2 5576 |
. . . . . . . . . . 11
| |
| 33 | 32 | eqeq2d 2217 |
. . . . . . . . . 10
|
| 34 | 31, 33 | anbi12d 473 |
. . . . . . . . 9
|
| 35 | 34 | adantl 277 |
. . . . . . . 8
|
| 36 | eqidd 2206 |
. . . . . . . . 9
| |
| 37 | simpr 110 |
. . . . . . . . 9
| |
| 38 | 36, 37 | jca 306 |
. . . . . . . 8
|
| 39 | 29, 35, 38 | rspcedvd 2883 |
. . . . . . 7
|
| 40 | fveq2 5576 |
. . . . . . . 8
| |
| 41 | oveq1 5951 |
. . . . . . . . . 10
| |
| 42 | 41 | eqeq2d 2217 |
. . . . . . . . 9
|
| 43 | seqeq1 10595 |
. . . . . . . . . . 11
| |
| 44 | 43 | fveq1d 5578 |
. . . . . . . . . 10
|
| 45 | 44 | eqeq2d 2217 |
. . . . . . . . 9
|
| 46 | 42, 45 | anbi12d 473 |
. . . . . . . 8
|
| 47 | 40, 46 | rexeqbidv 2719 |
. . . . . . 7
|
| 48 | 28, 39, 47 | spcedv 2862 |
. . . . . 6
|
| 49 | 48 | ex 115 |
. . . . 5
|
| 50 | 26, 49 | impbid2 143 |
. . . 4
|
| 51 | eluzfz2 10154 |
. . . . . . . 8
| |
| 52 | 5, 51 | syl 14 |
. . . . . . 7
|
| 53 | n0i 3466 |
. . . . . . 7
| |
| 54 | 52, 53 | syl 14 |
. . . . . 6
|
| 55 | 54 | intnanrd 934 |
. . . . 5
|
| 56 | biorf 746 |
. . . . 5
| |
| 57 | 55, 56 | syl 14 |
. . . 4
|
| 58 | 50, 57 | bitr3d 190 |
. . 3
|
| 59 | 58 | iotabidv 5254 |
. 2
|
| 60 | eqid 2205 |
. . 3
| |
| 61 | seqex 10594 |
. . . . 5
| |
| 62 | fvexg 5595 |
. . . . 5
| |
| 63 | 61, 5, 62 | sylancr 414 |
. . . 4
|
| 64 | eueq 2944 |
. . . . 5
| |
| 65 | 63, 64 | sylib 122 |
. . . 4
|
| 66 | eqeq1 2212 |
. . . . 5
| |
| 67 | 66 | iota2 5261 |
. . . 4
|
| 68 | 63, 65, 67 | syl2anc 411 |
. . 3
|
| 69 | 60, 68 | mpbii 148 |
. 2
|
| 70 | 12, 59, 69 | 3eqtr2d 2244 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-1o 6502 df-er 6620 df-en 6828 df-fin 6830 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 df-fz 10131 df-seqfrec 10593 df-ndx 12835 df-slot 12836 df-base 12838 df-0g 13090 df-igsum 13091 |
| This theorem is referenced by: gsumsplit1r 13230 gsumprval 13231 gsumwsubmcl 13328 gsumwmhm 13330 mulgnngsum 13463 gsumfzconst 13677 |
| Copyright terms: Public domain | W3C validator |