ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumval2 Unicode version

Theorem gsumval2 13040
Description: Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval2.b  |-  B  =  ( Base `  G
)
gsumval2.p  |-  .+  =  ( +g  `  G )
gsumval2.g  |-  ( ph  ->  G  e.  V )
gsumval2.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
gsumval2.f  |-  ( ph  ->  F : ( M ... N ) --> B )
Assertion
Ref Expression
gsumval2  |-  ( ph  ->  ( G  gsumg  F )  =  (  seq M (  .+  ,  F ) `  N
) )

Proof of Theorem gsumval2
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval2.b . . 3  |-  B  =  ( Base `  G
)
2 eqid 2196 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
3 gsumval2.p . . 3  |-  .+  =  ( +g  `  G )
4 gsumval2.g . . 3  |-  ( ph  ->  G  e.  V )
5 gsumval2.n . . . . 5  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
6 eluzel2 9606 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
75, 6syl 14 . . . 4  |-  ( ph  ->  M  e.  ZZ )
8 eluzelz 9610 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
95, 8syl 14 . . . 4  |-  ( ph  ->  N  e.  ZZ )
107, 9fzfigd 10523 . . 3  |-  ( ph  ->  ( M ... N
)  e.  Fin )
11 gsumval2.f . . 3  |-  ( ph  ->  F : ( M ... N ) --> B )
121, 2, 3, 4, 10, 11igsumval 13033 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  ( iota x ( ( ( M ... N
)  =  (/)  /\  x  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
13 simprr 531 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  x  =  (  seq m (  .+  ,  F ) `  n
) )
14 simprl 529 . . . . . . . . . . . 12  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
( M ... N
)  =  ( m ... n ) )
15 eqcom 2198 . . . . . . . . . . . . . 14  |-  ( ( m ... n )  =  ( M ... N )  <->  ( M ... N )  =  ( m ... n ) )
16 fzopth 10136 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  m
)  ->  ( (
m ... n )  =  ( M ... N
)  <->  ( m  =  M  /\  n  =  N ) ) )
1715, 16bitr3id 194 . . . . . . . . . . . . 13  |-  ( n  e.  ( ZZ>= `  m
)  ->  ( ( M ... N )  =  ( m ... n
)  <->  ( m  =  M  /\  n  =  N ) ) )
1817adantr 276 . . . . . . . . . . . 12  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
( ( M ... N )  =  ( m ... n )  <-> 
( m  =  M  /\  n  =  N ) ) )
1914, 18mpbid 147 . . . . . . . . . . 11  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
( m  =  M  /\  n  =  N ) )
2019simpld 112 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  m  =  M )
2120seqeq1d 10545 . . . . . . . . 9  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  seq m (  .+  ,  F )  =  seq M (  .+  ,  F ) )
2219simprd 114 . . . . . . . . 9  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  n  =  N )
2321, 22fveq12d 5565 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
(  seq m (  .+  ,  F ) `  n
)  =  (  seq M (  .+  ,  F ) `  N
) )
2413, 23eqtrd 2229 . . . . . . 7  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  x  =  (  seq M (  .+  ,  F ) `  N
) )
2524rexlimiva 2609 . . . . . 6  |-  ( E. n  e.  ( ZZ>= `  m ) ( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
)  ->  x  =  (  seq M (  .+  ,  F ) `  N
) )
2625exlimiv 1612 . . . . 5  |-  ( E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  ->  x  =  (  seq M ( 
.+  ,  F ) `
 N ) )
277elexd 2776 . . . . . . . 8  |-  ( ph  ->  M  e.  _V )
2827adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  M  e.  _V )
295adantr 276 . . . . . . . 8  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  N  e.  ( ZZ>= `  M )
)
30 oveq2 5930 . . . . . . . . . . 11  |-  ( n  =  N  ->  ( M ... n )  =  ( M ... N
) )
3130eqeq2d 2208 . . . . . . . . . 10  |-  ( n  =  N  ->  (
( M ... N
)  =  ( M ... n )  <->  ( M ... N )  =  ( M ... N ) ) )
32 fveq2 5558 . . . . . . . . . . 11  |-  ( n  =  N  ->  (  seq M (  .+  ,  F ) `  n
)  =  (  seq M (  .+  ,  F ) `  N
) )
3332eqeq2d 2208 . . . . . . . . . 10  |-  ( n  =  N  ->  (
x  =  (  seq M (  .+  ,  F ) `  n
)  <->  x  =  (  seq M (  .+  ,  F ) `  N
) ) )
3431, 33anbi12d 473 . . . . . . . . 9  |-  ( n  =  N  ->  (
( ( M ... N )  =  ( M ... n )  /\  x  =  (  seq M (  .+  ,  F ) `  n
) )  <->  ( ( M ... N )  =  ( M ... N
)  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) ) )
3534adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) )  /\  n  =  N )  ->  ( (
( M ... N
)  =  ( M ... n )  /\  x  =  (  seq M (  .+  ,  F ) `  n
) )  <->  ( ( M ... N )  =  ( M ... N
)  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) ) )
36 eqidd 2197 . . . . . . . . 9  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  ( M ... N )  =  ( M ... N
) )
37 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  x  =  (  seq M ( 
.+  ,  F ) `
 N ) )
3836, 37jca 306 . . . . . . . 8  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  (
( M ... N
)  =  ( M ... N )  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) )
3929, 35, 38rspcedvd 2874 . . . . . . 7  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  E. n  e.  ( ZZ>= `  M )
( ( M ... N )  =  ( M ... n )  /\  x  =  (  seq M (  .+  ,  F ) `  n
) ) )
40 fveq2 5558 . . . . . . . 8  |-  ( m  =  M  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  M )
)
41 oveq1 5929 . . . . . . . . . 10  |-  ( m  =  M  ->  (
m ... n )  =  ( M ... n
) )
4241eqeq2d 2208 . . . . . . . . 9  |-  ( m  =  M  ->  (
( M ... N
)  =  ( m ... n )  <->  ( M ... N )  =  ( M ... n ) ) )
43 seqeq1 10542 . . . . . . . . . . 11  |-  ( m  =  M  ->  seq m (  .+  ,  F )  =  seq M (  .+  ,  F ) )
4443fveq1d 5560 . . . . . . . . . 10  |-  ( m  =  M  ->  (  seq m (  .+  ,  F ) `  n
)  =  (  seq M (  .+  ,  F ) `  n
) )
4544eqeq2d 2208 . . . . . . . . 9  |-  ( m  =  M  ->  (
x  =  (  seq m (  .+  ,  F ) `  n
)  <->  x  =  (  seq M (  .+  ,  F ) `  n
) ) )
4642, 45anbi12d 473 . . . . . . . 8  |-  ( m  =  M  ->  (
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  <->  ( ( M ... N )  =  ( M ... n
)  /\  x  =  (  seq M (  .+  ,  F ) `  n
) ) ) )
4740, 46rexeqbidv 2710 . . . . . . 7  |-  ( m  =  M  ->  ( E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  <->  E. n  e.  ( ZZ>= `  M )
( ( M ... N )  =  ( M ... n )  /\  x  =  (  seq M (  .+  ,  F ) `  n
) ) ) )
4828, 39, 47spcedv 2853 . . . . . 6  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  E. m E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )
4948ex 115 . . . . 5  |-  ( ph  ->  ( x  =  (  seq M (  .+  ,  F ) `  N
)  ->  E. m E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
5026, 49impbid2 143 . . . 4  |-  ( ph  ->  ( E. m E. n  e.  ( ZZ>= `  m ) ( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
)  <->  x  =  (  seq M (  .+  ,  F ) `  N
) ) )
51 eluzfz2 10107 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
525, 51syl 14 . . . . . . 7  |-  ( ph  ->  N  e.  ( M ... N ) )
53 n0i 3456 . . . . . . 7  |-  ( N  e.  ( M ... N )  ->  -.  ( M ... N )  =  (/) )
5452, 53syl 14 . . . . . 6  |-  ( ph  ->  -.  ( M ... N )  =  (/) )
5554intnanrd 933 . . . . 5  |-  ( ph  ->  -.  ( ( M ... N )  =  (/)  /\  x  =  ( 0g `  G ) ) )
56 biorf 745 . . . . 5  |-  ( -.  ( ( M ... N )  =  (/)  /\  x  =  ( 0g
`  G ) )  ->  ( E. m E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  <->  ( (
( M ... N
)  =  (/)  /\  x  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
5755, 56syl 14 . . . 4  |-  ( ph  ->  ( E. m E. n  e.  ( ZZ>= `  m ) ( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
)  <->  ( ( ( M ... N )  =  (/)  /\  x  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
5850, 57bitr3d 190 . . 3  |-  ( ph  ->  ( x  =  (  seq M (  .+  ,  F ) `  N
)  <->  ( ( ( M ... N )  =  (/)  /\  x  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
5958iotabidv 5241 . 2  |-  ( ph  ->  ( iota x x  =  (  seq M
(  .+  ,  F
) `  N )
)  =  ( iota
x ( ( ( M ... N )  =  (/)  /\  x  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
60 eqid 2196 . . 3  |-  (  seq M (  .+  ,  F ) `  N
)  =  (  seq M (  .+  ,  F ) `  N
)
61 seqex 10541 . . . . 5  |-  seq M
(  .+  ,  F
)  e.  _V
62 fvexg 5577 . . . . 5  |-  ( (  seq M (  .+  ,  F )  e.  _V  /\  N  e.  ( ZZ>= `  M ) )  -> 
(  seq M (  .+  ,  F ) `  N
)  e.  _V )
6361, 5, 62sylancr 414 . . . 4  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  e. 
_V )
64 eueq 2935 . . . . 5  |-  ( (  seq M (  .+  ,  F ) `  N
)  e.  _V  <->  E! x  x  =  (  seq M (  .+  ,  F ) `  N
) )
6563, 64sylib 122 . . . 4  |-  ( ph  ->  E! x  x  =  (  seq M ( 
.+  ,  F ) `
 N ) )
66 eqeq1 2203 . . . . 5  |-  ( x  =  (  seq M
(  .+  ,  F
) `  N )  ->  ( x  =  (  seq M (  .+  ,  F ) `  N
)  <->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )
6766iota2 5248 . . . 4  |-  ( ( (  seq M ( 
.+  ,  F ) `
 N )  e. 
_V  /\  E! x  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  (
(  seq M (  .+  ,  F ) `  N
)  =  (  seq M (  .+  ,  F ) `  N
)  <->  ( iota x x  =  (  seq M (  .+  ,  F ) `  N
) )  =  (  seq M (  .+  ,  F ) `  N
) ) )
6863, 65, 67syl2anc 411 . . 3  |-  ( ph  ->  ( (  seq M
(  .+  ,  F
) `  N )  =  (  seq M ( 
.+  ,  F ) `
 N )  <->  ( iota x x  =  (  seq M (  .+  ,  F ) `  N
) )  =  (  seq M (  .+  ,  F ) `  N
) ) )
6960, 68mpbii 148 . 2  |-  ( ph  ->  ( iota x x  =  (  seq M
(  .+  ,  F
) `  N )
)  =  (  seq M (  .+  ,  F ) `  N
) )
7012, 59, 693eqtr2d 2235 1  |-  ( ph  ->  ( G  gsumg  F )  =  (  seq M (  .+  ,  F ) `  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364   E.wex 1506   E!weu 2045    e. wcel 2167   E.wrex 2476   _Vcvv 2763   (/)c0 3450   iotacio 5217   -->wf 5254   ` cfv 5258  (class class class)co 5922   Fincfn 6799   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083    seqcseq 10539   Basecbs 12678   +g cplusg 12755   0gc0g 12927    gsumg cgsu 12928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-er 6592  df-en 6800  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-seqfrec 10540  df-ndx 12681  df-slot 12682  df-base 12684  df-0g 12929  df-igsum 12930
This theorem is referenced by:  gsumsplit1r  13041  gsumprval  13042  gsumwsubmcl  13128  gsumwmhm  13130  mulgnngsum  13257  gsumfzconst  13471
  Copyright terms: Public domain W3C validator