ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumval2 Unicode version

Theorem gsumval2 12980
Description: Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval2.b  |-  B  =  ( Base `  G
)
gsumval2.p  |-  .+  =  ( +g  `  G )
gsumval2.g  |-  ( ph  ->  G  e.  V )
gsumval2.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
gsumval2.f  |-  ( ph  ->  F : ( M ... N ) --> B )
Assertion
Ref Expression
gsumval2  |-  ( ph  ->  ( G  gsumg  F )  =  (  seq M (  .+  ,  F ) `  N
) )

Proof of Theorem gsumval2
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval2.b . . 3  |-  B  =  ( Base `  G
)
2 eqid 2193 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
3 gsumval2.p . . 3  |-  .+  =  ( +g  `  G )
4 gsumval2.g . . 3  |-  ( ph  ->  G  e.  V )
5 gsumval2.n . . . . 5  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
6 eluzel2 9597 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
75, 6syl 14 . . . 4  |-  ( ph  ->  M  e.  ZZ )
8 eluzelz 9601 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
95, 8syl 14 . . . 4  |-  ( ph  ->  N  e.  ZZ )
107, 9fzfigd 10502 . . 3  |-  ( ph  ->  ( M ... N
)  e.  Fin )
11 gsumval2.f . . 3  |-  ( ph  ->  F : ( M ... N ) --> B )
121, 2, 3, 4, 10, 11igsumval 12973 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  ( iota x ( ( ( M ... N
)  =  (/)  /\  x  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
13 simprr 531 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  x  =  (  seq m (  .+  ,  F ) `  n
) )
14 simprl 529 . . . . . . . . . . . 12  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
( M ... N
)  =  ( m ... n ) )
15 eqcom 2195 . . . . . . . . . . . . . 14  |-  ( ( m ... n )  =  ( M ... N )  <->  ( M ... N )  =  ( m ... n ) )
16 fzopth 10127 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  m
)  ->  ( (
m ... n )  =  ( M ... N
)  <->  ( m  =  M  /\  n  =  N ) ) )
1715, 16bitr3id 194 . . . . . . . . . . . . 13  |-  ( n  e.  ( ZZ>= `  m
)  ->  ( ( M ... N )  =  ( m ... n
)  <->  ( m  =  M  /\  n  =  N ) ) )
1817adantr 276 . . . . . . . . . . . 12  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
( ( M ... N )  =  ( m ... n )  <-> 
( m  =  M  /\  n  =  N ) ) )
1914, 18mpbid 147 . . . . . . . . . . 11  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
( m  =  M  /\  n  =  N ) )
2019simpld 112 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  m  =  M )
2120seqeq1d 10524 . . . . . . . . 9  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  seq m (  .+  ,  F )  =  seq M (  .+  ,  F ) )
2219simprd 114 . . . . . . . . 9  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  n  =  N )
2321, 22fveq12d 5561 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
(  seq m (  .+  ,  F ) `  n
)  =  (  seq M (  .+  ,  F ) `  N
) )
2413, 23eqtrd 2226 . . . . . . 7  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  x  =  (  seq M (  .+  ,  F ) `  N
) )
2524rexlimiva 2606 . . . . . 6  |-  ( E. n  e.  ( ZZ>= `  m ) ( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
)  ->  x  =  (  seq M (  .+  ,  F ) `  N
) )
2625exlimiv 1609 . . . . 5  |-  ( E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  ->  x  =  (  seq M ( 
.+  ,  F ) `
 N ) )
277elexd 2773 . . . . . . . 8  |-  ( ph  ->  M  e.  _V )
2827adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  M  e.  _V )
295adantr 276 . . . . . . . 8  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  N  e.  ( ZZ>= `  M )
)
30 oveq2 5926 . . . . . . . . . . 11  |-  ( n  =  N  ->  ( M ... n )  =  ( M ... N
) )
3130eqeq2d 2205 . . . . . . . . . 10  |-  ( n  =  N  ->  (
( M ... N
)  =  ( M ... n )  <->  ( M ... N )  =  ( M ... N ) ) )
32 fveq2 5554 . . . . . . . . . . 11  |-  ( n  =  N  ->  (  seq M (  .+  ,  F ) `  n
)  =  (  seq M (  .+  ,  F ) `  N
) )
3332eqeq2d 2205 . . . . . . . . . 10  |-  ( n  =  N  ->  (
x  =  (  seq M (  .+  ,  F ) `  n
)  <->  x  =  (  seq M (  .+  ,  F ) `  N
) ) )
3431, 33anbi12d 473 . . . . . . . . 9  |-  ( n  =  N  ->  (
( ( M ... N )  =  ( M ... n )  /\  x  =  (  seq M (  .+  ,  F ) `  n
) )  <->  ( ( M ... N )  =  ( M ... N
)  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) ) )
3534adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) )  /\  n  =  N )  ->  ( (
( M ... N
)  =  ( M ... n )  /\  x  =  (  seq M (  .+  ,  F ) `  n
) )  <->  ( ( M ... N )  =  ( M ... N
)  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) ) )
36 eqidd 2194 . . . . . . . . 9  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  ( M ... N )  =  ( M ... N
) )
37 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  x  =  (  seq M ( 
.+  ,  F ) `
 N ) )
3836, 37jca 306 . . . . . . . 8  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  (
( M ... N
)  =  ( M ... N )  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) )
3929, 35, 38rspcedvd 2870 . . . . . . 7  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  E. n  e.  ( ZZ>= `  M )
( ( M ... N )  =  ( M ... n )  /\  x  =  (  seq M (  .+  ,  F ) `  n
) ) )
40 fveq2 5554 . . . . . . . 8  |-  ( m  =  M  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  M )
)
41 oveq1 5925 . . . . . . . . . 10  |-  ( m  =  M  ->  (
m ... n )  =  ( M ... n
) )
4241eqeq2d 2205 . . . . . . . . 9  |-  ( m  =  M  ->  (
( M ... N
)  =  ( m ... n )  <->  ( M ... N )  =  ( M ... n ) ) )
43 seqeq1 10521 . . . . . . . . . . 11  |-  ( m  =  M  ->  seq m (  .+  ,  F )  =  seq M (  .+  ,  F ) )
4443fveq1d 5556 . . . . . . . . . 10  |-  ( m  =  M  ->  (  seq m (  .+  ,  F ) `  n
)  =  (  seq M (  .+  ,  F ) `  n
) )
4544eqeq2d 2205 . . . . . . . . 9  |-  ( m  =  M  ->  (
x  =  (  seq m (  .+  ,  F ) `  n
)  <->  x  =  (  seq M (  .+  ,  F ) `  n
) ) )
4642, 45anbi12d 473 . . . . . . . 8  |-  ( m  =  M  ->  (
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  <->  ( ( M ... N )  =  ( M ... n
)  /\  x  =  (  seq M (  .+  ,  F ) `  n
) ) ) )
4740, 46rexeqbidv 2707 . . . . . . 7  |-  ( m  =  M  ->  ( E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  <->  E. n  e.  ( ZZ>= `  M )
( ( M ... N )  =  ( M ... n )  /\  x  =  (  seq M (  .+  ,  F ) `  n
) ) ) )
4828, 39, 47spcedv 2849 . . . . . 6  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  E. m E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )
4948ex 115 . . . . 5  |-  ( ph  ->  ( x  =  (  seq M (  .+  ,  F ) `  N
)  ->  E. m E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
5026, 49impbid2 143 . . . 4  |-  ( ph  ->  ( E. m E. n  e.  ( ZZ>= `  m ) ( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
)  <->  x  =  (  seq M (  .+  ,  F ) `  N
) ) )
51 eluzfz2 10098 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
525, 51syl 14 . . . . . . 7  |-  ( ph  ->  N  e.  ( M ... N ) )
53 n0i 3452 . . . . . . 7  |-  ( N  e.  ( M ... N )  ->  -.  ( M ... N )  =  (/) )
5452, 53syl 14 . . . . . 6  |-  ( ph  ->  -.  ( M ... N )  =  (/) )
5554intnanrd 933 . . . . 5  |-  ( ph  ->  -.  ( ( M ... N )  =  (/)  /\  x  =  ( 0g `  G ) ) )
56 biorf 745 . . . . 5  |-  ( -.  ( ( M ... N )  =  (/)  /\  x  =  ( 0g
`  G ) )  ->  ( E. m E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  <->  ( (
( M ... N
)  =  (/)  /\  x  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
5755, 56syl 14 . . . 4  |-  ( ph  ->  ( E. m E. n  e.  ( ZZ>= `  m ) ( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
)  <->  ( ( ( M ... N )  =  (/)  /\  x  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
5850, 57bitr3d 190 . . 3  |-  ( ph  ->  ( x  =  (  seq M (  .+  ,  F ) `  N
)  <->  ( ( ( M ... N )  =  (/)  /\  x  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
5958iotabidv 5237 . 2  |-  ( ph  ->  ( iota x x  =  (  seq M
(  .+  ,  F
) `  N )
)  =  ( iota
x ( ( ( M ... N )  =  (/)  /\  x  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
60 eqid 2193 . . 3  |-  (  seq M (  .+  ,  F ) `  N
)  =  (  seq M (  .+  ,  F ) `  N
)
61 seqex 10520 . . . . 5  |-  seq M
(  .+  ,  F
)  e.  _V
62 fvexg 5573 . . . . 5  |-  ( (  seq M (  .+  ,  F )  e.  _V  /\  N  e.  ( ZZ>= `  M ) )  -> 
(  seq M (  .+  ,  F ) `  N
)  e.  _V )
6361, 5, 62sylancr 414 . . . 4  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  e. 
_V )
64 eueq 2931 . . . . 5  |-  ( (  seq M (  .+  ,  F ) `  N
)  e.  _V  <->  E! x  x  =  (  seq M (  .+  ,  F ) `  N
) )
6563, 64sylib 122 . . . 4  |-  ( ph  ->  E! x  x  =  (  seq M ( 
.+  ,  F ) `
 N ) )
66 eqeq1 2200 . . . . 5  |-  ( x  =  (  seq M
(  .+  ,  F
) `  N )  ->  ( x  =  (  seq M (  .+  ,  F ) `  N
)  <->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )
6766iota2 5244 . . . 4  |-  ( ( (  seq M ( 
.+  ,  F ) `
 N )  e. 
_V  /\  E! x  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  (
(  seq M (  .+  ,  F ) `  N
)  =  (  seq M (  .+  ,  F ) `  N
)  <->  ( iota x x  =  (  seq M (  .+  ,  F ) `  N
) )  =  (  seq M (  .+  ,  F ) `  N
) ) )
6863, 65, 67syl2anc 411 . . 3  |-  ( ph  ->  ( (  seq M
(  .+  ,  F
) `  N )  =  (  seq M ( 
.+  ,  F ) `
 N )  <->  ( iota x x  =  (  seq M (  .+  ,  F ) `  N
) )  =  (  seq M (  .+  ,  F ) `  N
) ) )
6960, 68mpbii 148 . 2  |-  ( ph  ->  ( iota x x  =  (  seq M
(  .+  ,  F
) `  N )
)  =  (  seq M (  .+  ,  F ) `  N
) )
7012, 59, 693eqtr2d 2232 1  |-  ( ph  ->  ( G  gsumg  F )  =  (  seq M (  .+  ,  F ) `  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364   E.wex 1503   E!weu 2042    e. wcel 2164   E.wrex 2473   _Vcvv 2760   (/)c0 3446   iotacio 5213   -->wf 5250   ` cfv 5254  (class class class)co 5918   Fincfn 6794   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074    seqcseq 10518   Basecbs 12618   +g cplusg 12695   0gc0g 12867    gsumg cgsu 12868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-er 6587  df-en 6795  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-0g 12869  df-igsum 12870
This theorem is referenced by:  gsumsplit1r  12981  gsumprval  12982  gsumwsubmcl  13068  gsumwmhm  13070  mulgnngsum  13197  gsumfzconst  13411
  Copyright terms: Public domain W3C validator