ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumval2 Unicode version

Theorem gsumval2 13229
Description: Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval2.b  |-  B  =  ( Base `  G
)
gsumval2.p  |-  .+  =  ( +g  `  G )
gsumval2.g  |-  ( ph  ->  G  e.  V )
gsumval2.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
gsumval2.f  |-  ( ph  ->  F : ( M ... N ) --> B )
Assertion
Ref Expression
gsumval2  |-  ( ph  ->  ( G  gsumg  F )  =  (  seq M (  .+  ,  F ) `  N
) )

Proof of Theorem gsumval2
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval2.b . . 3  |-  B  =  ( Base `  G
)
2 eqid 2205 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
3 gsumval2.p . . 3  |-  .+  =  ( +g  `  G )
4 gsumval2.g . . 3  |-  ( ph  ->  G  e.  V )
5 gsumval2.n . . . . 5  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
6 eluzel2 9653 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
75, 6syl 14 . . . 4  |-  ( ph  ->  M  e.  ZZ )
8 eluzelz 9657 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
95, 8syl 14 . . . 4  |-  ( ph  ->  N  e.  ZZ )
107, 9fzfigd 10576 . . 3  |-  ( ph  ->  ( M ... N
)  e.  Fin )
11 gsumval2.f . . 3  |-  ( ph  ->  F : ( M ... N ) --> B )
121, 2, 3, 4, 10, 11igsumval 13222 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  ( iota x ( ( ( M ... N
)  =  (/)  /\  x  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
13 simprr 531 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  x  =  (  seq m (  .+  ,  F ) `  n
) )
14 simprl 529 . . . . . . . . . . . 12  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
( M ... N
)  =  ( m ... n ) )
15 eqcom 2207 . . . . . . . . . . . . . 14  |-  ( ( m ... n )  =  ( M ... N )  <->  ( M ... N )  =  ( m ... n ) )
16 fzopth 10183 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  m
)  ->  ( (
m ... n )  =  ( M ... N
)  <->  ( m  =  M  /\  n  =  N ) ) )
1715, 16bitr3id 194 . . . . . . . . . . . . 13  |-  ( n  e.  ( ZZ>= `  m
)  ->  ( ( M ... N )  =  ( m ... n
)  <->  ( m  =  M  /\  n  =  N ) ) )
1817adantr 276 . . . . . . . . . . . 12  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
( ( M ... N )  =  ( m ... n )  <-> 
( m  =  M  /\  n  =  N ) ) )
1914, 18mpbid 147 . . . . . . . . . . 11  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
( m  =  M  /\  n  =  N ) )
2019simpld 112 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  m  =  M )
2120seqeq1d 10598 . . . . . . . . 9  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  seq m (  .+  ,  F )  =  seq M (  .+  ,  F ) )
2219simprd 114 . . . . . . . . 9  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  n  =  N )
2321, 22fveq12d 5583 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  -> 
(  seq m (  .+  ,  F ) `  n
)  =  (  seq M (  .+  ,  F ) `  N
) )
2413, 23eqtrd 2238 . . . . . . 7  |-  ( ( n  e.  ( ZZ>= `  m )  /\  (
( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )  ->  x  =  (  seq M (  .+  ,  F ) `  N
) )
2524rexlimiva 2618 . . . . . 6  |-  ( E. n  e.  ( ZZ>= `  m ) ( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
)  ->  x  =  (  seq M (  .+  ,  F ) `  N
) )
2625exlimiv 1621 . . . . 5  |-  ( E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  ->  x  =  (  seq M ( 
.+  ,  F ) `
 N ) )
277elexd 2785 . . . . . . . 8  |-  ( ph  ->  M  e.  _V )
2827adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  M  e.  _V )
295adantr 276 . . . . . . . 8  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  N  e.  ( ZZ>= `  M )
)
30 oveq2 5952 . . . . . . . . . . 11  |-  ( n  =  N  ->  ( M ... n )  =  ( M ... N
) )
3130eqeq2d 2217 . . . . . . . . . 10  |-  ( n  =  N  ->  (
( M ... N
)  =  ( M ... n )  <->  ( M ... N )  =  ( M ... N ) ) )
32 fveq2 5576 . . . . . . . . . . 11  |-  ( n  =  N  ->  (  seq M (  .+  ,  F ) `  n
)  =  (  seq M (  .+  ,  F ) `  N
) )
3332eqeq2d 2217 . . . . . . . . . 10  |-  ( n  =  N  ->  (
x  =  (  seq M (  .+  ,  F ) `  n
)  <->  x  =  (  seq M (  .+  ,  F ) `  N
) ) )
3431, 33anbi12d 473 . . . . . . . . 9  |-  ( n  =  N  ->  (
( ( M ... N )  =  ( M ... n )  /\  x  =  (  seq M (  .+  ,  F ) `  n
) )  <->  ( ( M ... N )  =  ( M ... N
)  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) ) )
3534adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  x  =  (  seq M ( 
.+  ,  F ) `
 N ) )  /\  n  =  N )  ->  ( (
( M ... N
)  =  ( M ... n )  /\  x  =  (  seq M (  .+  ,  F ) `  n
) )  <->  ( ( M ... N )  =  ( M ... N
)  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) ) )
36 eqidd 2206 . . . . . . . . 9  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  ( M ... N )  =  ( M ... N
) )
37 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  x  =  (  seq M ( 
.+  ,  F ) `
 N ) )
3836, 37jca 306 . . . . . . . 8  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  (
( M ... N
)  =  ( M ... N )  /\  x  =  (  seq M (  .+  ,  F ) `  N
) ) )
3929, 35, 38rspcedvd 2883 . . . . . . 7  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  E. n  e.  ( ZZ>= `  M )
( ( M ... N )  =  ( M ... n )  /\  x  =  (  seq M (  .+  ,  F ) `  n
) ) )
40 fveq2 5576 . . . . . . . 8  |-  ( m  =  M  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  M )
)
41 oveq1 5951 . . . . . . . . . 10  |-  ( m  =  M  ->  (
m ... n )  =  ( M ... n
) )
4241eqeq2d 2217 . . . . . . . . 9  |-  ( m  =  M  ->  (
( M ... N
)  =  ( m ... n )  <->  ( M ... N )  =  ( M ... n ) ) )
43 seqeq1 10595 . . . . . . . . . . 11  |-  ( m  =  M  ->  seq m (  .+  ,  F )  =  seq M (  .+  ,  F ) )
4443fveq1d 5578 . . . . . . . . . 10  |-  ( m  =  M  ->  (  seq m (  .+  ,  F ) `  n
)  =  (  seq M (  .+  ,  F ) `  n
) )
4544eqeq2d 2217 . . . . . . . . 9  |-  ( m  =  M  ->  (
x  =  (  seq m (  .+  ,  F ) `  n
)  <->  x  =  (  seq M (  .+  ,  F ) `  n
) ) )
4642, 45anbi12d 473 . . . . . . . 8  |-  ( m  =  M  ->  (
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  <->  ( ( M ... N )  =  ( M ... n
)  /\  x  =  (  seq M (  .+  ,  F ) `  n
) ) ) )
4740, 46rexeqbidv 2719 . . . . . . 7  |-  ( m  =  M  ->  ( E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  <->  E. n  e.  ( ZZ>= `  M )
( ( M ... N )  =  ( M ... n )  /\  x  =  (  seq M (  .+  ,  F ) `  n
) ) ) )
4828, 39, 47spcedv 2862 . . . . . 6  |-  ( (
ph  /\  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  E. m E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) )
4948ex 115 . . . . 5  |-  ( ph  ->  ( x  =  (  seq M (  .+  ,  F ) `  N
)  ->  E. m E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
5026, 49impbid2 143 . . . 4  |-  ( ph  ->  ( E. m E. n  e.  ( ZZ>= `  m ) ( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
)  <->  x  =  (  seq M (  .+  ,  F ) `  N
) ) )
51 eluzfz2 10154 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
525, 51syl 14 . . . . . . 7  |-  ( ph  ->  N  e.  ( M ... N ) )
53 n0i 3466 . . . . . . 7  |-  ( N  e.  ( M ... N )  ->  -.  ( M ... N )  =  (/) )
5452, 53syl 14 . . . . . 6  |-  ( ph  ->  -.  ( M ... N )  =  (/) )
5554intnanrd 934 . . . . 5  |-  ( ph  ->  -.  ( ( M ... N )  =  (/)  /\  x  =  ( 0g `  G ) ) )
56 biorf 746 . . . . 5  |-  ( -.  ( ( M ... N )  =  (/)  /\  x  =  ( 0g
`  G ) )  ->  ( E. m E. n  e.  ( ZZ>=
`  m ) ( ( M ... N
)  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) )  <->  ( (
( M ... N
)  =  (/)  /\  x  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
5755, 56syl 14 . . . 4  |-  ( ph  ->  ( E. m E. n  e.  ( ZZ>= `  m ) ( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
)  <->  ( ( ( M ... N )  =  (/)  /\  x  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
5850, 57bitr3d 190 . . 3  |-  ( ph  ->  ( x  =  (  seq M (  .+  ,  F ) `  N
)  <->  ( ( ( M ... N )  =  (/)  /\  x  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
5958iotabidv 5254 . 2  |-  ( ph  ->  ( iota x x  =  (  seq M
(  .+  ,  F
) `  N )
)  =  ( iota
x ( ( ( M ... N )  =  (/)  /\  x  =  ( 0g `  G ) )  \/ 
E. m E. n  e.  ( ZZ>= `  m )
( ( M ... N )  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ) )
60 eqid 2205 . . 3  |-  (  seq M (  .+  ,  F ) `  N
)  =  (  seq M (  .+  ,  F ) `  N
)
61 seqex 10594 . . . . 5  |-  seq M
(  .+  ,  F
)  e.  _V
62 fvexg 5595 . . . . 5  |-  ( (  seq M (  .+  ,  F )  e.  _V  /\  N  e.  ( ZZ>= `  M ) )  -> 
(  seq M (  .+  ,  F ) `  N
)  e.  _V )
6361, 5, 62sylancr 414 . . . 4  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  e. 
_V )
64 eueq 2944 . . . . 5  |-  ( (  seq M (  .+  ,  F ) `  N
)  e.  _V  <->  E! x  x  =  (  seq M (  .+  ,  F ) `  N
) )
6563, 64sylib 122 . . . 4  |-  ( ph  ->  E! x  x  =  (  seq M ( 
.+  ,  F ) `
 N ) )
66 eqeq1 2212 . . . . 5  |-  ( x  =  (  seq M
(  .+  ,  F
) `  N )  ->  ( x  =  (  seq M (  .+  ,  F ) `  N
)  <->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )
6766iota2 5261 . . . 4  |-  ( ( (  seq M ( 
.+  ,  F ) `
 N )  e. 
_V  /\  E! x  x  =  (  seq M (  .+  ,  F ) `  N
) )  ->  (
(  seq M (  .+  ,  F ) `  N
)  =  (  seq M (  .+  ,  F ) `  N
)  <->  ( iota x x  =  (  seq M (  .+  ,  F ) `  N
) )  =  (  seq M (  .+  ,  F ) `  N
) ) )
6863, 65, 67syl2anc 411 . . 3  |-  ( ph  ->  ( (  seq M
(  .+  ,  F
) `  N )  =  (  seq M ( 
.+  ,  F ) `
 N )  <->  ( iota x x  =  (  seq M (  .+  ,  F ) `  N
) )  =  (  seq M (  .+  ,  F ) `  N
) ) )
6960, 68mpbii 148 . 2  |-  ( ph  ->  ( iota x x  =  (  seq M
(  .+  ,  F
) `  N )
)  =  (  seq M (  .+  ,  F ) `  N
) )
7012, 59, 693eqtr2d 2244 1  |-  ( ph  ->  ( G  gsumg  F )  =  (  seq M (  .+  ,  F ) `  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373   E.wex 1515   E!weu 2054    e. wcel 2176   E.wrex 2485   _Vcvv 2772   (/)c0 3460   iotacio 5230   -->wf 5267   ` cfv 5271  (class class class)co 5944   Fincfn 6827   ZZcz 9372   ZZ>=cuz 9648   ...cfz 10130    seqcseq 10592   Basecbs 12832   +g cplusg 12909   0gc0g 13088    gsumg cgsu 13089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-1o 6502  df-er 6620  df-en 6828  df-fin 6830  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131  df-seqfrec 10593  df-ndx 12835  df-slot 12836  df-base 12838  df-0g 13090  df-igsum 13091
This theorem is referenced by:  gsumsplit1r  13230  gsumprval  13231  gsumwsubmcl  13328  gsumwmhm  13330  mulgnngsum  13463  gsumfzconst  13677
  Copyright terms: Public domain W3C validator