![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lmodnegadd | GIF version |
Description: Distribute negation through addition of scalar products. (Contributed by NM, 9-Apr-2015.) |
Ref | Expression |
---|---|
lmodnegadd.v | β’ π = (Baseβπ) |
lmodnegadd.p | β’ + = (+gβπ) |
lmodnegadd.t | β’ Β· = ( Β·π βπ) |
lmodnegadd.n | β’ π = (invgβπ) |
lmodnegadd.r | β’ π = (Scalarβπ) |
lmodnegadd.k | β’ πΎ = (Baseβπ ) |
lmodnegadd.i | β’ πΌ = (invgβπ ) |
lmodnegadd.w | β’ (π β π β LMod) |
lmodnegadd.a | β’ (π β π΄ β πΎ) |
lmodnegadd.b | β’ (π β π΅ β πΎ) |
lmodnegadd.x | β’ (π β π β π) |
lmodnegadd.y | β’ (π β π β π) |
Ref | Expression |
---|---|
lmodnegadd | β’ (π β (πβ((π΄ Β· π) + (π΅ Β· π))) = (((πΌβπ΄) Β· π) + ((πΌβπ΅) Β· π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodnegadd.w | . . . 4 β’ (π β π β LMod) | |
2 | lmodabl 13429 | . . . 4 β’ (π β LMod β π β Abel) | |
3 | 1, 2 | syl 14 | . . 3 β’ (π β π β Abel) |
4 | lmodnegadd.a | . . . 4 β’ (π β π΄ β πΎ) | |
5 | lmodnegadd.x | . . . 4 β’ (π β π β π) | |
6 | lmodnegadd.v | . . . . 5 β’ π = (Baseβπ) | |
7 | lmodnegadd.r | . . . . 5 β’ π = (Scalarβπ) | |
8 | lmodnegadd.t | . . . . 5 β’ Β· = ( Β·π βπ) | |
9 | lmodnegadd.k | . . . . 5 β’ πΎ = (Baseβπ ) | |
10 | 6, 7, 8, 9 | lmodvscl 13400 | . . . 4 β’ ((π β LMod β§ π΄ β πΎ β§ π β π) β (π΄ Β· π) β π) |
11 | 1, 4, 5, 10 | syl3anc 1238 | . . 3 β’ (π β (π΄ Β· π) β π) |
12 | lmodnegadd.b | . . . 4 β’ (π β π΅ β πΎ) | |
13 | lmodnegadd.y | . . . 4 β’ (π β π β π) | |
14 | 6, 7, 8, 9 | lmodvscl 13400 | . . . 4 β’ ((π β LMod β§ π΅ β πΎ β§ π β π) β (π΅ Β· π) β π) |
15 | 1, 12, 13, 14 | syl3anc 1238 | . . 3 β’ (π β (π΅ Β· π) β π) |
16 | lmodnegadd.p | . . . 4 β’ + = (+gβπ) | |
17 | lmodnegadd.n | . . . 4 β’ π = (invgβπ) | |
18 | 6, 16, 17 | ablinvadd 13118 | . . 3 β’ ((π β Abel β§ (π΄ Β· π) β π β§ (π΅ Β· π) β π) β (πβ((π΄ Β· π) + (π΅ Β· π))) = ((πβ(π΄ Β· π)) + (πβ(π΅ Β· π)))) |
19 | 3, 11, 15, 18 | syl3anc 1238 | . 2 β’ (π β (πβ((π΄ Β· π) + (π΅ Β· π))) = ((πβ(π΄ Β· π)) + (πβ(π΅ Β· π)))) |
20 | lmodnegadd.i | . . . 4 β’ πΌ = (invgβπ ) | |
21 | 6, 7, 8, 17, 9, 20, 1, 5, 4 | lmodvsneg 13426 | . . 3 β’ (π β (πβ(π΄ Β· π)) = ((πΌβπ΄) Β· π)) |
22 | 6, 7, 8, 17, 9, 20, 1, 13, 12 | lmodvsneg 13426 | . . 3 β’ (π β (πβ(π΅ Β· π)) = ((πΌβπ΅) Β· π)) |
23 | 21, 22 | oveq12d 5895 | . 2 β’ (π β ((πβ(π΄ Β· π)) + (πβ(π΅ Β· π))) = (((πΌβπ΄) Β· π) + ((πΌβπ΅) Β· π))) |
24 | 19, 23 | eqtrd 2210 | 1 β’ (π β (πβ((π΄ Β· π) + (π΅ Β· π))) = (((πΌβπ΄) Β· π) + ((πΌβπ΅) Β· π))) |
Colors of variables: wff set class |
Syntax hints: β wi 4 = wceq 1353 β wcel 2148 βcfv 5218 (class class class)co 5877 Basecbs 12464 +gcplusg 12538 Scalarcsca 12541 Β·π cvsca 12542 invgcminusg 12883 Abelcabl 13094 LModclmod 13382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-pre-ltirr 7925 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-ltxr 7999 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-5 8983 df-6 8984 df-ndx 12467 df-slot 12468 df-base 12470 df-sets 12471 df-plusg 12551 df-mulr 12552 df-sca 12554 df-vsca 12555 df-0g 12712 df-mgm 12780 df-sgrp 12813 df-mnd 12823 df-grp 12885 df-minusg 12886 df-cmn 13095 df-abl 13096 df-mgp 13136 df-ur 13148 df-ring 13186 df-lmod 13384 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |