| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodnegadd | GIF version | ||
| Description: Distribute negation through addition of scalar products. (Contributed by NM, 9-Apr-2015.) |
| Ref | Expression |
|---|---|
| lmodnegadd.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodnegadd.p | ⊢ + = (+g‘𝑊) |
| lmodnegadd.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodnegadd.n | ⊢ 𝑁 = (invg‘𝑊) |
| lmodnegadd.r | ⊢ 𝑅 = (Scalar‘𝑊) |
| lmodnegadd.k | ⊢ 𝐾 = (Base‘𝑅) |
| lmodnegadd.i | ⊢ 𝐼 = (invg‘𝑅) |
| lmodnegadd.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lmodnegadd.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
| lmodnegadd.b | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
| lmodnegadd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lmodnegadd.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| lmodnegadd | ⊢ (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = (((𝐼‘𝐴) · 𝑋) + ((𝐼‘𝐵) · 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodnegadd.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | lmodabl 14146 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → 𝑊 ∈ Abel) |
| 4 | lmodnegadd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
| 5 | lmodnegadd.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 6 | lmodnegadd.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 7 | lmodnegadd.r | . . . . 5 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 8 | lmodnegadd.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 9 | lmodnegadd.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
| 10 | 6, 7, 8, 9 | lmodvscl 14117 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐴 · 𝑋) ∈ 𝑉) |
| 11 | 1, 4, 5, 10 | syl3anc 1250 | . . 3 ⊢ (𝜑 → (𝐴 · 𝑋) ∈ 𝑉) |
| 12 | lmodnegadd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
| 13 | lmodnegadd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 14 | 6, 7, 8, 9 | lmodvscl 14117 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝐵 · 𝑌) ∈ 𝑉) |
| 15 | 1, 12, 13, 14 | syl3anc 1250 | . . 3 ⊢ (𝜑 → (𝐵 · 𝑌) ∈ 𝑉) |
| 16 | lmodnegadd.p | . . . 4 ⊢ + = (+g‘𝑊) | |
| 17 | lmodnegadd.n | . . . 4 ⊢ 𝑁 = (invg‘𝑊) | |
| 18 | 6, 16, 17 | ablinvadd 13696 | . . 3 ⊢ ((𝑊 ∈ Abel ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑌) ∈ 𝑉) → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = ((𝑁‘(𝐴 · 𝑋)) + (𝑁‘(𝐵 · 𝑌)))) |
| 19 | 3, 11, 15, 18 | syl3anc 1250 | . 2 ⊢ (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = ((𝑁‘(𝐴 · 𝑋)) + (𝑁‘(𝐵 · 𝑌)))) |
| 20 | lmodnegadd.i | . . . 4 ⊢ 𝐼 = (invg‘𝑅) | |
| 21 | 6, 7, 8, 17, 9, 20, 1, 5, 4 | lmodvsneg 14143 | . . 3 ⊢ (𝜑 → (𝑁‘(𝐴 · 𝑋)) = ((𝐼‘𝐴) · 𝑋)) |
| 22 | 6, 7, 8, 17, 9, 20, 1, 13, 12 | lmodvsneg 14143 | . . 3 ⊢ (𝜑 → (𝑁‘(𝐵 · 𝑌)) = ((𝐼‘𝐵) · 𝑌)) |
| 23 | 21, 22 | oveq12d 5972 | . 2 ⊢ (𝜑 → ((𝑁‘(𝐴 · 𝑋)) + (𝑁‘(𝐵 · 𝑌))) = (((𝐼‘𝐴) · 𝑋) + ((𝐼‘𝐵) · 𝑌))) |
| 24 | 19, 23 | eqtrd 2239 | 1 ⊢ (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = (((𝐼‘𝐴) · 𝑋) + ((𝐼‘𝐵) · 𝑌))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ‘cfv 5277 (class class class)co 5954 Basecbs 12882 +gcplusg 12959 Scalarcsca 12962 ·𝑠 cvsca 12963 invgcminusg 13383 Abelcabl 13671 LModclmod 14099 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-addass 8040 ax-i2m1 8043 ax-0lt1 8044 ax-0id 8046 ax-rnegex 8047 ax-pre-ltirr 8050 ax-pre-ltadd 8054 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-pnf 8122 df-mnf 8123 df-ltxr 8125 df-inn 9050 df-2 9108 df-3 9109 df-4 9110 df-5 9111 df-6 9112 df-ndx 12885 df-slot 12886 df-base 12888 df-sets 12889 df-plusg 12972 df-mulr 12973 df-sca 12975 df-vsca 12976 df-0g 13140 df-mgm 13238 df-sgrp 13284 df-mnd 13299 df-grp 13385 df-minusg 13386 df-cmn 13672 df-abl 13673 df-mgp 13733 df-ur 13772 df-ring 13810 df-lmod 14101 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |