ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodnegadd GIF version

Theorem lmodnegadd 14285
Description: Distribute negation through addition of scalar products. (Contributed by NM, 9-Apr-2015.)
Hypotheses
Ref Expression
lmodnegadd.v 𝑉 = (Base‘𝑊)
lmodnegadd.p + = (+g𝑊)
lmodnegadd.t · = ( ·𝑠𝑊)
lmodnegadd.n 𝑁 = (invg𝑊)
lmodnegadd.r 𝑅 = (Scalar‘𝑊)
lmodnegadd.k 𝐾 = (Base‘𝑅)
lmodnegadd.i 𝐼 = (invg𝑅)
lmodnegadd.w (𝜑𝑊 ∈ LMod)
lmodnegadd.a (𝜑𝐴𝐾)
lmodnegadd.b (𝜑𝐵𝐾)
lmodnegadd.x (𝜑𝑋𝑉)
lmodnegadd.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lmodnegadd (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = (((𝐼𝐴) · 𝑋) + ((𝐼𝐵) · 𝑌)))

Proof of Theorem lmodnegadd
StepHypRef Expression
1 lmodnegadd.w . . . 4 (𝜑𝑊 ∈ LMod)
2 lmodabl 14283 . . . 4 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
31, 2syl 14 . . 3 (𝜑𝑊 ∈ Abel)
4 lmodnegadd.a . . . 4 (𝜑𝐴𝐾)
5 lmodnegadd.x . . . 4 (𝜑𝑋𝑉)
6 lmodnegadd.v . . . . 5 𝑉 = (Base‘𝑊)
7 lmodnegadd.r . . . . 5 𝑅 = (Scalar‘𝑊)
8 lmodnegadd.t . . . . 5 · = ( ·𝑠𝑊)
9 lmodnegadd.k . . . . 5 𝐾 = (Base‘𝑅)
106, 7, 8, 9lmodvscl 14254 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝑋𝑉) → (𝐴 · 𝑋) ∈ 𝑉)
111, 4, 5, 10syl3anc 1271 . . 3 (𝜑 → (𝐴 · 𝑋) ∈ 𝑉)
12 lmodnegadd.b . . . 4 (𝜑𝐵𝐾)
13 lmodnegadd.y . . . 4 (𝜑𝑌𝑉)
146, 7, 8, 9lmodvscl 14254 . . . 4 ((𝑊 ∈ LMod ∧ 𝐵𝐾𝑌𝑉) → (𝐵 · 𝑌) ∈ 𝑉)
151, 12, 13, 14syl3anc 1271 . . 3 (𝜑 → (𝐵 · 𝑌) ∈ 𝑉)
16 lmodnegadd.p . . . 4 + = (+g𝑊)
17 lmodnegadd.n . . . 4 𝑁 = (invg𝑊)
186, 16, 17ablinvadd 13833 . . 3 ((𝑊 ∈ Abel ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑌) ∈ 𝑉) → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = ((𝑁‘(𝐴 · 𝑋)) + (𝑁‘(𝐵 · 𝑌))))
193, 11, 15, 18syl3anc 1271 . 2 (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = ((𝑁‘(𝐴 · 𝑋)) + (𝑁‘(𝐵 · 𝑌))))
20 lmodnegadd.i . . . 4 𝐼 = (invg𝑅)
216, 7, 8, 17, 9, 20, 1, 5, 4lmodvsneg 14280 . . 3 (𝜑 → (𝑁‘(𝐴 · 𝑋)) = ((𝐼𝐴) · 𝑋))
226, 7, 8, 17, 9, 20, 1, 13, 12lmodvsneg 14280 . . 3 (𝜑 → (𝑁‘(𝐵 · 𝑌)) = ((𝐼𝐵) · 𝑌))
2321, 22oveq12d 6012 . 2 (𝜑 → ((𝑁‘(𝐴 · 𝑋)) + (𝑁‘(𝐵 · 𝑌))) = (((𝐼𝐴) · 𝑋) + ((𝐼𝐵) · 𝑌)))
2419, 23eqtrd 2262 1 (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = (((𝐼𝐴) · 𝑋) + ((𝐼𝐵) · 𝑌)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  cfv 5314  (class class class)co 5994  Basecbs 13018  +gcplusg 13096  Scalarcsca 13099   ·𝑠 cvsca 13100  invgcminusg 13520  Abelcabl 13808  LModclmod 14236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-pre-ltirr 8099  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-pnf 8171  df-mnf 8172  df-ltxr 8174  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-ndx 13021  df-slot 13022  df-base 13024  df-sets 13025  df-plusg 13109  df-mulr 13110  df-sca 13112  df-vsca 13113  df-0g 13277  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-grp 13522  df-minusg 13523  df-cmn 13809  df-abl 13810  df-mgp 13870  df-ur 13909  df-ring 13947  df-lmod 14238
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator