ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqpru Unicode version

Theorem nqpru 7514
Description: Comparing a fraction to a real can be done by whether it is an element of the upper cut, or by 
<P. (Contributed by Jim Kingdon, 29-Nov-2020.)
Assertion
Ref Expression
nqpru  |-  ( ( A  e.  Q.  /\  B  e.  P. )  ->  ( A  e.  ( 2nd `  B )  <-> 
B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
)
Distinct variable group:    A, l, u
Allowed substitution hints:    B( u, l)

Proof of Theorem nqpru
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 prop 7437 . . . . . 6  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
2 prnminu 7451 . . . . . 6  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  A  e.  ( 2nd `  B ) )  ->  E. x  e.  ( 2nd `  B ) x 
<Q  A )
31, 2sylan 281 . . . . 5  |-  ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  ->  E. x  e.  ( 2nd `  B ) x 
<Q  A )
4 elprnqu 7444 . . . . . . . . . 10  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  x  e.  ( 2nd `  B ) )  ->  x  e.  Q. )
51, 4sylan 281 . . . . . . . . 9  |-  ( ( B  e.  P.  /\  x  e.  ( 2nd `  B ) )  ->  x  e.  Q. )
65ad2ant2r 506 . . . . . . . 8  |-  ( ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  /\  ( x  e.  ( 2nd `  B )  /\  x  <Q  A ) )  ->  x  e.  Q. )
7 simprl 526 . . . . . . . 8  |-  ( ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  /\  ( x  e.  ( 2nd `  B )  /\  x  <Q  A ) )  ->  x  e.  ( 2nd `  B ) )
8 vex 2733 . . . . . . . . . . . 12  |-  x  e. 
_V
9 breq1 3992 . . . . . . . . . . . 12  |-  ( l  =  x  ->  (
l  <Q  A  <->  x  <Q  A ) )
108, 9elab 2874 . . . . . . . . . . 11  |-  ( x  e.  { l  |  l  <Q  A }  <->  x 
<Q  A )
1110biimpri 132 . . . . . . . . . 10  |-  ( x 
<Q  A  ->  x  e. 
{ l  |  l 
<Q  A } )
12 ltnqex 7511 . . . . . . . . . . . 12  |-  { l  |  l  <Q  A }  e.  _V
13 gtnqex 7512 . . . . . . . . . . . 12  |-  { u  |  A  <Q  u }  e.  _V
1412, 13op1st 6125 . . . . . . . . . . 11  |-  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  =  { l  |  l 
<Q  A }
1514eleq2i 2237 . . . . . . . . . 10  |-  ( x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  <->  x  e.  { l  |  l  <Q  A }
)
1611, 15sylibr 133 . . . . . . . . 9  |-  ( x 
<Q  A  ->  x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) )
1716ad2antll 488 . . . . . . . 8  |-  ( ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  /\  ( x  e.  ( 2nd `  B )  /\  x  <Q  A ) )  ->  x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
)
18 19.8a 1583 . . . . . . . 8  |-  ( ( x  e.  Q.  /\  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) )  ->  E. x ( x  e.  Q.  /\  (
x  e.  ( 2nd `  B )  /\  x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) ) ) )
196, 7, 17, 18syl12anc 1231 . . . . . . 7  |-  ( ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  /\  ( x  e.  ( 2nd `  B )  /\  x  <Q  A ) )  ->  E. x ( x  e.  Q.  /\  (
x  e.  ( 2nd `  B )  /\  x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) ) ) )
20 df-rex 2454 . . . . . . 7  |-  ( E. x  e.  Q.  (
x  e.  ( 2nd `  B )  /\  x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) )  <->  E. x
( x  e.  Q.  /\  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
) ) )
2119, 20sylibr 133 . . . . . 6  |-  ( ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  /\  ( x  e.  ( 2nd `  B )  /\  x  <Q  A ) )  ->  E. x  e.  Q.  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) )
22 elprnqu 7444 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  A  e.  ( 2nd `  B ) )  ->  A  e.  Q. )
231, 22sylan 281 . . . . . . . 8  |-  ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  ->  A  e.  Q. )
24 nqprlu 7509 . . . . . . . . 9  |-  ( A  e.  Q.  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  e.  P. )
25 ltdfpr 7468 . . . . . . . . 9  |-  ( ( B  e.  P.  /\  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  e.  P. )  ->  ( B  <P  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) ) )
2624, 25sylan2 284 . . . . . . . 8  |-  ( ( B  e.  P.  /\  A  e.  Q. )  ->  ( B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  B
)  /\  x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
) ) )
2723, 26syldan 280 . . . . . . 7  |-  ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  -> 
( B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  B
)  /\  x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
) ) )
2827adantr 274 . . . . . 6  |-  ( ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  /\  ( x  e.  ( 2nd `  B )  /\  x  <Q  A ) )  ->  ( B  <P  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) ) )
2921, 28mpbird 166 . . . . 5  |-  ( ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  /\  ( x  e.  ( 2nd `  B )  /\  x  <Q  A ) )  ->  B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
303, 29rexlimddv 2592 . . . 4  |-  ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  ->  B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
3130ex 114 . . 3  |-  ( B  e.  P.  ->  ( A  e.  ( 2nd `  B )  ->  B  <P 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) )
3231adantl 275 . 2  |-  ( ( A  e.  Q.  /\  B  e.  P. )  ->  ( A  e.  ( 2nd `  B )  ->  B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
)
3326ancoms 266 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  P. )  ->  ( B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  B
)  /\  x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
) ) )
3433biimpa 294 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  P. )  /\  B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  ->  E. x  e.  Q.  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) )
3515, 10bitri 183 . . . . . . . 8  |-  ( x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  <->  x  <Q  A )
3635biimpi 119 . . . . . . 7  |-  ( x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  ->  x  <Q  A )
3736ad2antll 488 . . . . . 6  |-  ( ( x  e.  Q.  /\  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) )  ->  x  <Q  A )
3837adantl 275 . . . . 5  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  P. )  /\  B  <P  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. )  /\  (
x  e.  Q.  /\  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) ) )  ->  x  <Q  A )
39 simpllr 529 . . . . . 6  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  P. )  /\  B  <P  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. )  /\  (
x  e.  Q.  /\  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) ) )  ->  B  e.  P. )
40 simprrl 534 . . . . . 6  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  P. )  /\  B  <P  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. )  /\  (
x  e.  Q.  /\  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) ) )  ->  x  e.  ( 2nd `  B ) )
41 prcunqu 7447 . . . . . . 7  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  x  e.  ( 2nd `  B ) )  -> 
( x  <Q  A  ->  A  e.  ( 2nd `  B ) ) )
421, 41sylan 281 . . . . . 6  |-  ( ( B  e.  P.  /\  x  e.  ( 2nd `  B ) )  -> 
( x  <Q  A  ->  A  e.  ( 2nd `  B ) ) )
4339, 40, 42syl2anc 409 . . . . 5  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  P. )  /\  B  <P  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. )  /\  (
x  e.  Q.  /\  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) ) )  ->  ( x  <Q  A  ->  A  e.  ( 2nd `  B ) ) )
4438, 43mpd 13 . . . 4  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  P. )  /\  B  <P  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. )  /\  (
x  e.  Q.  /\  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) ) )  ->  A  e.  ( 2nd `  B ) )
4534, 44rexlimddv 2592 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  P. )  /\  B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  ->  A  e.  ( 2nd `  B ) )
4645ex 114 . 2  |-  ( ( A  e.  Q.  /\  B  e.  P. )  ->  ( B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  ->  A  e.  ( 2nd `  B
) ) )
4732, 46impbid 128 1  |-  ( ( A  e.  Q.  /\  B  e.  P. )  ->  ( A  e.  ( 2nd `  B )  <-> 
B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   E.wex 1485    e. wcel 2141   {cab 2156   E.wrex 2449   <.cop 3586   class class class wbr 3989   ` cfv 5198   1stc1st 6117   2ndc2nd 6118   Q.cnq 7242    <Q cltq 7247   P.cnp 7253    <P cltp 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-inp 7428  df-iltp 7432
This theorem is referenced by:  prplnqu  7582  caucvgprprlemmu  7657  caucvgprprlemopu  7661  caucvgprprlemexbt  7668  caucvgprprlem2  7672  suplocexprlemloc  7683
  Copyright terms: Public domain W3C validator