ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqpru Unicode version

Theorem nqpru 7665
Description: Comparing a fraction to a real can be done by whether it is an element of the upper cut, or by 
<P. (Contributed by Jim Kingdon, 29-Nov-2020.)
Assertion
Ref Expression
nqpru  |-  ( ( A  e.  Q.  /\  B  e.  P. )  ->  ( A  e.  ( 2nd `  B )  <-> 
B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
)
Distinct variable group:    A, l, u
Allowed substitution hints:    B( u, l)

Proof of Theorem nqpru
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 prop 7588 . . . . . 6  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
2 prnminu 7602 . . . . . 6  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  A  e.  ( 2nd `  B ) )  ->  E. x  e.  ( 2nd `  B ) x 
<Q  A )
31, 2sylan 283 . . . . 5  |-  ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  ->  E. x  e.  ( 2nd `  B ) x 
<Q  A )
4 elprnqu 7595 . . . . . . . . . 10  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  x  e.  ( 2nd `  B ) )  ->  x  e.  Q. )
51, 4sylan 283 . . . . . . . . 9  |-  ( ( B  e.  P.  /\  x  e.  ( 2nd `  B ) )  ->  x  e.  Q. )
65ad2ant2r 509 . . . . . . . 8  |-  ( ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  /\  ( x  e.  ( 2nd `  B )  /\  x  <Q  A ) )  ->  x  e.  Q. )
7 simprl 529 . . . . . . . 8  |-  ( ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  /\  ( x  e.  ( 2nd `  B )  /\  x  <Q  A ) )  ->  x  e.  ( 2nd `  B ) )
8 vex 2775 . . . . . . . . . . . 12  |-  x  e. 
_V
9 breq1 4047 . . . . . . . . . . . 12  |-  ( l  =  x  ->  (
l  <Q  A  <->  x  <Q  A ) )
108, 9elab 2917 . . . . . . . . . . 11  |-  ( x  e.  { l  |  l  <Q  A }  <->  x 
<Q  A )
1110biimpri 133 . . . . . . . . . 10  |-  ( x 
<Q  A  ->  x  e. 
{ l  |  l 
<Q  A } )
12 ltnqex 7662 . . . . . . . . . . . 12  |-  { l  |  l  <Q  A }  e.  _V
13 gtnqex 7663 . . . . . . . . . . . 12  |-  { u  |  A  <Q  u }  e.  _V
1412, 13op1st 6232 . . . . . . . . . . 11  |-  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  =  { l  |  l 
<Q  A }
1514eleq2i 2272 . . . . . . . . . 10  |-  ( x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  <->  x  e.  { l  |  l  <Q  A }
)
1611, 15sylibr 134 . . . . . . . . 9  |-  ( x 
<Q  A  ->  x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) )
1716ad2antll 491 . . . . . . . 8  |-  ( ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  /\  ( x  e.  ( 2nd `  B )  /\  x  <Q  A ) )  ->  x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
)
18 19.8a 1613 . . . . . . . 8  |-  ( ( x  e.  Q.  /\  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) )  ->  E. x ( x  e.  Q.  /\  (
x  e.  ( 2nd `  B )  /\  x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) ) ) )
196, 7, 17, 18syl12anc 1248 . . . . . . 7  |-  ( ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  /\  ( x  e.  ( 2nd `  B )  /\  x  <Q  A ) )  ->  E. x ( x  e.  Q.  /\  (
x  e.  ( 2nd `  B )  /\  x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) ) ) )
20 df-rex 2490 . . . . . . 7  |-  ( E. x  e.  Q.  (
x  e.  ( 2nd `  B )  /\  x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) )  <->  E. x
( x  e.  Q.  /\  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
) ) )
2119, 20sylibr 134 . . . . . 6  |-  ( ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  /\  ( x  e.  ( 2nd `  B )  /\  x  <Q  A ) )  ->  E. x  e.  Q.  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) )
22 elprnqu 7595 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  A  e.  ( 2nd `  B ) )  ->  A  e.  Q. )
231, 22sylan 283 . . . . . . . 8  |-  ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  ->  A  e.  Q. )
24 nqprlu 7660 . . . . . . . . 9  |-  ( A  e.  Q.  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  e.  P. )
25 ltdfpr 7619 . . . . . . . . 9  |-  ( ( B  e.  P.  /\  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  e.  P. )  ->  ( B  <P  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) ) )
2624, 25sylan2 286 . . . . . . . 8  |-  ( ( B  e.  P.  /\  A  e.  Q. )  ->  ( B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  B
)  /\  x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
) ) )
2723, 26syldan 282 . . . . . . 7  |-  ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  -> 
( B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  B
)  /\  x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
) ) )
2827adantr 276 . . . . . 6  |-  ( ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  /\  ( x  e.  ( 2nd `  B )  /\  x  <Q  A ) )  ->  ( B  <P  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) ) )
2921, 28mpbird 167 . . . . 5  |-  ( ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  /\  ( x  e.  ( 2nd `  B )  /\  x  <Q  A ) )  ->  B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
303, 29rexlimddv 2628 . . . 4  |-  ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  ->  B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
3130ex 115 . . 3  |-  ( B  e.  P.  ->  ( A  e.  ( 2nd `  B )  ->  B  <P 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) )
3231adantl 277 . 2  |-  ( ( A  e.  Q.  /\  B  e.  P. )  ->  ( A  e.  ( 2nd `  B )  ->  B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
)
3326ancoms 268 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  P. )  ->  ( B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  B
)  /\  x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
) ) )
3433biimpa 296 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  P. )  /\  B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  ->  E. x  e.  Q.  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) )
3515, 10bitri 184 . . . . . . . 8  |-  ( x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  <->  x  <Q  A )
3635biimpi 120 . . . . . . 7  |-  ( x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  ->  x  <Q  A )
3736ad2antll 491 . . . . . 6  |-  ( ( x  e.  Q.  /\  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) )  ->  x  <Q  A )
3837adantl 277 . . . . 5  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  P. )  /\  B  <P  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. )  /\  (
x  e.  Q.  /\  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) ) )  ->  x  <Q  A )
39 simpllr 534 . . . . . 6  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  P. )  /\  B  <P  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. )  /\  (
x  e.  Q.  /\  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) ) )  ->  B  e.  P. )
40 simprrl 539 . . . . . 6  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  P. )  /\  B  <P  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. )  /\  (
x  e.  Q.  /\  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) ) )  ->  x  e.  ( 2nd `  B ) )
41 prcunqu 7598 . . . . . . 7  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  x  e.  ( 2nd `  B ) )  -> 
( x  <Q  A  ->  A  e.  ( 2nd `  B ) ) )
421, 41sylan 283 . . . . . 6  |-  ( ( B  e.  P.  /\  x  e.  ( 2nd `  B ) )  -> 
( x  <Q  A  ->  A  e.  ( 2nd `  B ) ) )
4339, 40, 42syl2anc 411 . . . . 5  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  P. )  /\  B  <P  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. )  /\  (
x  e.  Q.  /\  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) ) )  ->  ( x  <Q  A  ->  A  e.  ( 2nd `  B ) ) )
4438, 43mpd 13 . . . 4  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  P. )  /\  B  <P  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. )  /\  (
x  e.  Q.  /\  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) ) )  ->  A  e.  ( 2nd `  B ) )
4534, 44rexlimddv 2628 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  P. )  /\  B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  ->  A  e.  ( 2nd `  B ) )
4645ex 115 . 2  |-  ( ( A  e.  Q.  /\  B  e.  P. )  ->  ( B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  ->  A  e.  ( 2nd `  B
) ) )
4732, 46impbid 129 1  |-  ( ( A  e.  Q.  /\  B  e.  P. )  ->  ( A  e.  ( 2nd `  B )  <-> 
B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1515    e. wcel 2176   {cab 2191   E.wrex 2485   <.cop 3636   class class class wbr 4044   ` cfv 5271   1stc1st 6224   2ndc2nd 6225   Q.cnq 7393    <Q cltq 7398   P.cnp 7404    <P cltp 7408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-eprel 4336  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-1o 6502  df-oadd 6506  df-omul 6507  df-er 6620  df-ec 6622  df-qs 6626  df-ni 7417  df-pli 7418  df-mi 7419  df-lti 7420  df-plpq 7457  df-mpq 7458  df-enq 7460  df-nqqs 7461  df-plqqs 7462  df-mqqs 7463  df-1nqqs 7464  df-rq 7465  df-ltnqqs 7466  df-inp 7579  df-iltp 7583
This theorem is referenced by:  prplnqu  7733  caucvgprprlemmu  7808  caucvgprprlemopu  7812  caucvgprprlemexbt  7819  caucvgprprlem2  7823  suplocexprlemloc  7834
  Copyright terms: Public domain W3C validator