ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprl Unicode version

Theorem nqprl 7635
Description: Comparing a fraction to a real can be done by whether it is an element of the lower cut, or by 
<P. (Contributed by Jim Kingdon, 8-Jul-2020.)
Assertion
Ref Expression
nqprl  |-  ( ( A  e.  Q.  /\  B  e.  P. )  ->  ( A  e.  ( 1st `  B )  <->  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  <P  B ) )
Distinct variable group:    A, l, u
Allowed substitution hints:    B( u, l)

Proof of Theorem nqprl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 prop 7559 . . . . . 6  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
2 prnmaxl 7572 . . . . . 6  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  A  e.  ( 1st `  B ) )  ->  E. x  e.  ( 1st `  B ) A 
<Q  x )
31, 2sylan 283 . . . . 5  |-  ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  ->  E. x  e.  ( 1st `  B ) A 
<Q  x )
4 elprnql 7565 . . . . . . . . . 10  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  x  e.  ( 1st `  B ) )  ->  x  e.  Q. )
51, 4sylan 283 . . . . . . . . 9  |-  ( ( B  e.  P.  /\  x  e.  ( 1st `  B ) )  ->  x  e.  Q. )
65ad2ant2r 509 . . . . . . . 8  |-  ( ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  /\  ( x  e.  ( 1st `  B )  /\  A  <Q  x ) )  ->  x  e.  Q. )
7 vex 2766 . . . . . . . . . . . 12  |-  x  e. 
_V
8 breq2 4038 . . . . . . . . . . . 12  |-  ( u  =  x  ->  ( A  <Q  u  <->  A  <Q  x ) )
97, 8elab 2908 . . . . . . . . . . 11  |-  ( x  e.  { u  |  A  <Q  u }  <->  A 
<Q  x )
109biimpri 133 . . . . . . . . . 10  |-  ( A 
<Q  x  ->  x  e. 
{ u  |  A  <Q  u } )
11 ltnqex 7633 . . . . . . . . . . . 12  |-  { l  |  l  <Q  A }  e.  _V
12 gtnqex 7634 . . . . . . . . . . . 12  |-  { u  |  A  <Q  u }  e.  _V
1311, 12op2nd 6214 . . . . . . . . . . 11  |-  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  =  { u  |  A  <Q  u }
1413eleq2i 2263 . . . . . . . . . 10  |-  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  <->  x  e.  { u  |  A  <Q  u }
)
1510, 14sylibr 134 . . . . . . . . 9  |-  ( A 
<Q  x  ->  x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) )
1615ad2antll 491 . . . . . . . 8  |-  ( ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  /\  ( x  e.  ( 1st `  B )  /\  A  <Q  x ) )  ->  x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
)
17 simprl 529 . . . . . . . 8  |-  ( ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  /\  ( x  e.  ( 1st `  B )  /\  A  <Q  x ) )  ->  x  e.  ( 1st `  B ) )
18 19.8a 1604 . . . . . . . 8  |-  ( ( x  e.  Q.  /\  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B ) ) )  ->  E. x
( x  e.  Q.  /\  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B ) ) ) )
196, 16, 17, 18syl12anc 1247 . . . . . . 7  |-  ( ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  /\  ( x  e.  ( 1st `  B )  /\  A  <Q  x ) )  ->  E. x ( x  e.  Q.  /\  (
x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B ) ) ) )
20 df-rex 2481 . . . . . . 7  |-  ( E. x  e.  Q.  (
x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B ) )  <->  E. x ( x  e. 
Q.  /\  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B
) ) ) )
2119, 20sylibr 134 . . . . . 6  |-  ( ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  /\  ( x  e.  ( 1st `  B )  /\  A  <Q  x ) )  ->  E. x  e.  Q.  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B ) ) )
22 elprnql 7565 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  A  e.  ( 1st `  B ) )  ->  A  e.  Q. )
231, 22sylan 283 . . . . . . . 8  |-  ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  ->  A  e.  Q. )
24 simpl 109 . . . . . . . 8  |-  ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  ->  B  e.  P. )
25 nqprlu 7631 . . . . . . . . 9  |-  ( A  e.  Q.  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  e.  P. )
26 ltdfpr 7590 . . . . . . . . 9  |-  ( (
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  e.  P.  /\  B  e.  P. )  ->  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B
) ) ) )
2725, 26sylan 283 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  P. )  ->  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B
) ) ) )
2823, 24, 27syl2anc 411 . . . . . . 7  |-  ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  -> 
( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B
) ) ) )
2928adantr 276 . . . . . 6  |-  ( ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  /\  ( x  e.  ( 1st `  B )  /\  A  <Q  x ) )  ->  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B
) ) ) )
3021, 29mpbird 167 . . . . 5  |-  ( ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  /\  ( x  e.  ( 1st `  B )  /\  A  <Q  x ) )  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B )
313, 30rexlimddv 2619 . . . 4  |-  ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  ->  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  <P  B )
3231ex 115 . . 3  |-  ( B  e.  P.  ->  ( A  e.  ( 1st `  B )  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B ) )
3332adantl 277 . 2  |-  ( ( A  e.  Q.  /\  B  e.  P. )  ->  ( A  e.  ( 1st `  B )  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B ) )
3427biimpa 296 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  P. )  /\  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B )  ->  E. x  e.  Q.  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B ) ) )
3514, 9bitri 184 . . . . . . . 8  |-  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  <->  A  <Q  x )
3635biimpi 120 . . . . . . 7  |-  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  ->  A  <Q  x )
3736ad2antrl 490 . . . . . 6  |-  ( ( x  e.  Q.  /\  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B ) ) )  ->  A  <Q  x )
3837adantl 277 . . . . 5  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  P. )  /\  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B )  /\  ( x  e. 
Q.  /\  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B
) ) ) )  ->  A  <Q  x
)
39 simpllr 534 . . . . . 6  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  P. )  /\  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B )  /\  ( x  e. 
Q.  /\  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B
) ) ) )  ->  B  e.  P. )
40 simprrr 540 . . . . . 6  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  P. )  /\  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B )  /\  ( x  e. 
Q.  /\  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B
) ) ) )  ->  x  e.  ( 1st `  B ) )
41 prcdnql 7568 . . . . . . 7  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  x  e.  ( 1st `  B ) )  -> 
( A  <Q  x  ->  A  e.  ( 1st `  B ) ) )
421, 41sylan 283 . . . . . 6  |-  ( ( B  e.  P.  /\  x  e.  ( 1st `  B ) )  -> 
( A  <Q  x  ->  A  e.  ( 1st `  B ) ) )
4339, 40, 42syl2anc 411 . . . . 5  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  P. )  /\  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B )  /\  ( x  e. 
Q.  /\  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B
) ) ) )  ->  ( A  <Q  x  ->  A  e.  ( 1st `  B ) ) )
4438, 43mpd 13 . . . 4  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  P. )  /\  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B )  /\  ( x  e. 
Q.  /\  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B
) ) ) )  ->  A  e.  ( 1st `  B ) )
4534, 44rexlimddv 2619 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  P. )  /\  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B )  ->  A  e.  ( 1st `  B ) )
4645ex 115 . 2  |-  ( ( A  e.  Q.  /\  B  e.  P. )  ->  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B  ->  A  e.  ( 1st `  B ) ) )
4733, 46impbid 129 1  |-  ( ( A  e.  Q.  /\  B  e.  P. )  ->  ( A  e.  ( 1st `  B )  <->  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  <P  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1506    e. wcel 2167   {cab 2182   E.wrex 2476   <.cop 3626   class class class wbr 4034   ` cfv 5259   1stc1st 6205   2ndc2nd 6206   Q.cnq 7364    <Q cltq 7369   P.cnp 7375    <P cltp 7379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-inp 7550  df-iltp 7554
This theorem is referenced by:  caucvgprlemcanl  7728  cauappcvgprlem1  7743  archrecpr  7748  caucvgprlem1  7763  caucvgprprlemml  7778  caucvgprprlemopl  7781
  Copyright terms: Public domain W3C validator