Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn1gt1 | Unicode version |
Description: A positive integer is either one or greater than one. This is for ; 0elnn 4601 is a similar theorem for (the natural numbers as ordinals). (Contributed by Jim Kingdon, 7-Mar-2020.) |
Ref | Expression |
---|---|
nn1gt1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2177 | . . 3 | |
2 | breq2 3991 | . . 3 | |
3 | 1, 2 | orbi12d 788 | . 2 |
4 | eqeq1 2177 | . . 3 | |
5 | breq2 3991 | . . 3 | |
6 | 4, 5 | orbi12d 788 | . 2 |
7 | eqeq1 2177 | . . 3 | |
8 | breq2 3991 | . . 3 | |
9 | 7, 8 | orbi12d 788 | . 2 |
10 | eqeq1 2177 | . . 3 | |
11 | breq2 3991 | . . 3 | |
12 | 10, 11 | orbi12d 788 | . 2 |
13 | eqid 2170 | . . 3 | |
14 | 13 | orci 726 | . 2 |
15 | nngt0 8892 | . . . . 5 | |
16 | nnre 8874 | . . . . . 6 | |
17 | 1re 7908 | . . . . . 6 | |
18 | ltaddpos2 8361 | . . . . . 6 | |
19 | 16, 17, 18 | sylancl 411 | . . . . 5 |
20 | 15, 19 | mpbid 146 | . . . 4 |
21 | 20 | olcd 729 | . . 3 |
22 | 21 | a1d 22 | . 2 |
23 | 3, 6, 9, 12, 14, 22 | nnind 8883 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wo 703 wceq 1348 wcel 2141 class class class wbr 3987 (class class class)co 5851 cr 7762 cc0 7763 c1 7764 caddc 7766 clt 7943 cn 8867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7854 ax-resscn 7855 ax-1cn 7856 ax-1re 7857 ax-icn 7858 ax-addcl 7859 ax-addrcl 7860 ax-mulcl 7861 ax-addcom 7863 ax-addass 7865 ax-i2m1 7868 ax-0lt1 7869 ax-0id 7871 ax-rnegex 7872 ax-pre-ltirr 7875 ax-pre-ltwlin 7876 ax-pre-lttrn 7877 ax-pre-ltadd 7879 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-xp 4615 df-cnv 4617 df-iota 5158 df-fv 5204 df-ov 5854 df-pnf 7945 df-mnf 7946 df-xr 7947 df-ltxr 7948 df-le 7949 df-inn 8868 |
This theorem is referenced by: nngt1ne1 8902 resqrexlemglsq 10975 |
Copyright terms: Public domain | W3C validator |