ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn1gt1 Unicode version

Theorem nn1gt1 8901
Description: A positive integer is either one or greater than one. This is for  NN; 0elnn 4601 is a similar theorem for  om (the natural numbers as ordinals). (Contributed by Jim Kingdon, 7-Mar-2020.)
Assertion
Ref Expression
nn1gt1  |-  ( A  e.  NN  ->  ( A  =  1  \/  1  <  A ) )

Proof of Theorem nn1gt1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2177 . . 3  |-  ( x  =  1  ->  (
x  =  1  <->  1  =  1 ) )
2 breq2 3991 . . 3  |-  ( x  =  1  ->  (
1  <  x  <->  1  <  1 ) )
31, 2orbi12d 788 . 2  |-  ( x  =  1  ->  (
( x  =  1  \/  1  <  x
)  <->  ( 1  =  1  \/  1  <  1 ) ) )
4 eqeq1 2177 . . 3  |-  ( x  =  y  ->  (
x  =  1  <->  y  =  1 ) )
5 breq2 3991 . . 3  |-  ( x  =  y  ->  (
1  <  x  <->  1  <  y ) )
64, 5orbi12d 788 . 2  |-  ( x  =  y  ->  (
( x  =  1  \/  1  <  x
)  <->  ( y  =  1  \/  1  < 
y ) ) )
7 eqeq1 2177 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
x  =  1  <->  (
y  +  1 )  =  1 ) )
8 breq2 3991 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
1  <  x  <->  1  <  ( y  +  1 ) ) )
97, 8orbi12d 788 . 2  |-  ( x  =  ( y  +  1 )  ->  (
( x  =  1  \/  1  <  x
)  <->  ( ( y  +  1 )  =  1  \/  1  < 
( y  +  1 ) ) ) )
10 eqeq1 2177 . . 3  |-  ( x  =  A  ->  (
x  =  1  <->  A  =  1 ) )
11 breq2 3991 . . 3  |-  ( x  =  A  ->  (
1  <  x  <->  1  <  A ) )
1210, 11orbi12d 788 . 2  |-  ( x  =  A  ->  (
( x  =  1  \/  1  <  x
)  <->  ( A  =  1  \/  1  < 
A ) ) )
13 eqid 2170 . . 3  |-  1  =  1
1413orci 726 . 2  |-  ( 1  =  1  \/  1  <  1 )
15 nngt0 8892 . . . . 5  |-  ( y  e.  NN  ->  0  <  y )
16 nnre 8874 . . . . . 6  |-  ( y  e.  NN  ->  y  e.  RR )
17 1re 7908 . . . . . 6  |-  1  e.  RR
18 ltaddpos2 8361 . . . . . 6  |-  ( ( y  e.  RR  /\  1  e.  RR )  ->  ( 0  <  y  <->  1  <  ( y  +  1 ) ) )
1916, 17, 18sylancl 411 . . . . 5  |-  ( y  e.  NN  ->  (
0  <  y  <->  1  <  ( y  +  1 ) ) )
2015, 19mpbid 146 . . . 4  |-  ( y  e.  NN  ->  1  <  ( y  +  1 ) )
2120olcd 729 . . 3  |-  ( y  e.  NN  ->  (
( y  +  1 )  =  1  \/  1  <  ( y  +  1 ) ) )
2221a1d 22 . 2  |-  ( y  e.  NN  ->  (
( y  =  1  \/  1  <  y
)  ->  ( (
y  +  1 )  =  1  \/  1  <  ( y  +  1 ) ) ) )
233, 6, 9, 12, 14, 22nnind 8883 1  |-  ( A  e.  NN  ->  ( A  =  1  \/  1  <  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    \/ wo 703    = wceq 1348    e. wcel 2141   class class class wbr 3987  (class class class)co 5851   RRcr 7762   0cc0 7763   1c1 7764    + caddc 7766    < clt 7943   NNcn 8867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7854  ax-resscn 7855  ax-1cn 7856  ax-1re 7857  ax-icn 7858  ax-addcl 7859  ax-addrcl 7860  ax-mulcl 7861  ax-addcom 7863  ax-addass 7865  ax-i2m1 7868  ax-0lt1 7869  ax-0id 7871  ax-rnegex 7872  ax-pre-ltirr 7875  ax-pre-ltwlin 7876  ax-pre-lttrn 7877  ax-pre-ltadd 7879
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-br 3988  df-opab 4049  df-xp 4615  df-cnv 4617  df-iota 5158  df-fv 5204  df-ov 5854  df-pnf 7945  df-mnf 7946  df-xr 7947  df-ltxr 7948  df-le 7949  df-inn 8868
This theorem is referenced by:  nngt1ne1  8902  resqrexlemglsq  10975
  Copyright terms: Public domain W3C validator