ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn1gt1 Unicode version

Theorem nn1gt1 8949
Description: A positive integer is either one or greater than one. This is for  NN; 0elnn 4617 is a similar theorem for  om (the natural numbers as ordinals). (Contributed by Jim Kingdon, 7-Mar-2020.)
Assertion
Ref Expression
nn1gt1  |-  ( A  e.  NN  ->  ( A  =  1  \/  1  <  A ) )

Proof of Theorem nn1gt1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2184 . . 3  |-  ( x  =  1  ->  (
x  =  1  <->  1  =  1 ) )
2 breq2 4006 . . 3  |-  ( x  =  1  ->  (
1  <  x  <->  1  <  1 ) )
31, 2orbi12d 793 . 2  |-  ( x  =  1  ->  (
( x  =  1  \/  1  <  x
)  <->  ( 1  =  1  \/  1  <  1 ) ) )
4 eqeq1 2184 . . 3  |-  ( x  =  y  ->  (
x  =  1  <->  y  =  1 ) )
5 breq2 4006 . . 3  |-  ( x  =  y  ->  (
1  <  x  <->  1  <  y ) )
64, 5orbi12d 793 . 2  |-  ( x  =  y  ->  (
( x  =  1  \/  1  <  x
)  <->  ( y  =  1  \/  1  < 
y ) ) )
7 eqeq1 2184 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
x  =  1  <->  (
y  +  1 )  =  1 ) )
8 breq2 4006 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
1  <  x  <->  1  <  ( y  +  1 ) ) )
97, 8orbi12d 793 . 2  |-  ( x  =  ( y  +  1 )  ->  (
( x  =  1  \/  1  <  x
)  <->  ( ( y  +  1 )  =  1  \/  1  < 
( y  +  1 ) ) ) )
10 eqeq1 2184 . . 3  |-  ( x  =  A  ->  (
x  =  1  <->  A  =  1 ) )
11 breq2 4006 . . 3  |-  ( x  =  A  ->  (
1  <  x  <->  1  <  A ) )
1210, 11orbi12d 793 . 2  |-  ( x  =  A  ->  (
( x  =  1  \/  1  <  x
)  <->  ( A  =  1  \/  1  < 
A ) ) )
13 eqid 2177 . . 3  |-  1  =  1
1413orci 731 . 2  |-  ( 1  =  1  \/  1  <  1 )
15 nngt0 8940 . . . . 5  |-  ( y  e.  NN  ->  0  <  y )
16 nnre 8922 . . . . . 6  |-  ( y  e.  NN  ->  y  e.  RR )
17 1re 7953 . . . . . 6  |-  1  e.  RR
18 ltaddpos2 8406 . . . . . 6  |-  ( ( y  e.  RR  /\  1  e.  RR )  ->  ( 0  <  y  <->  1  <  ( y  +  1 ) ) )
1916, 17, 18sylancl 413 . . . . 5  |-  ( y  e.  NN  ->  (
0  <  y  <->  1  <  ( y  +  1 ) ) )
2015, 19mpbid 147 . . . 4  |-  ( y  e.  NN  ->  1  <  ( y  +  1 ) )
2120olcd 734 . . 3  |-  ( y  e.  NN  ->  (
( y  +  1 )  =  1  \/  1  <  ( y  +  1 ) ) )
2221a1d 22 . 2  |-  ( y  e.  NN  ->  (
( y  =  1  \/  1  <  y
)  ->  ( (
y  +  1 )  =  1  \/  1  <  ( y  +  1 ) ) ) )
233, 6, 9, 12, 14, 22nnind 8931 1  |-  ( A  e.  NN  ->  ( A  =  1  \/  1  <  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 708    = wceq 1353    e. wcel 2148   class class class wbr 4002  (class class class)co 5872   RRcr 7807   0cc0 7808   1c1 7809    + caddc 7811    < clt 7988   NNcn 8915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-cnex 7899  ax-resscn 7900  ax-1cn 7901  ax-1re 7902  ax-icn 7903  ax-addcl 7904  ax-addrcl 7905  ax-mulcl 7906  ax-addcom 7908  ax-addass 7910  ax-i2m1 7913  ax-0lt1 7914  ax-0id 7916  ax-rnegex 7917  ax-pre-ltirr 7920  ax-pre-ltwlin 7921  ax-pre-lttrn 7922  ax-pre-ltadd 7924
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4003  df-opab 4064  df-xp 4631  df-cnv 4633  df-iota 5177  df-fv 5223  df-ov 5875  df-pnf 7990  df-mnf 7991  df-xr 7992  df-ltxr 7993  df-le 7994  df-inn 8916
This theorem is referenced by:  nngt1ne1  8950  resqrexlemglsq  11024
  Copyright terms: Public domain W3C validator