ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn1gt1 Unicode version

Theorem nn1gt1 8891
Description: A positive integer is either one or greater than one. This is for  NN; 0elnn 4596 is a similar theorem for  om (the natural numbers as ordinals). (Contributed by Jim Kingdon, 7-Mar-2020.)
Assertion
Ref Expression
nn1gt1  |-  ( A  e.  NN  ->  ( A  =  1  \/  1  <  A ) )

Proof of Theorem nn1gt1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2172 . . 3  |-  ( x  =  1  ->  (
x  =  1  <->  1  =  1 ) )
2 breq2 3986 . . 3  |-  ( x  =  1  ->  (
1  <  x  <->  1  <  1 ) )
31, 2orbi12d 783 . 2  |-  ( x  =  1  ->  (
( x  =  1  \/  1  <  x
)  <->  ( 1  =  1  \/  1  <  1 ) ) )
4 eqeq1 2172 . . 3  |-  ( x  =  y  ->  (
x  =  1  <->  y  =  1 ) )
5 breq2 3986 . . 3  |-  ( x  =  y  ->  (
1  <  x  <->  1  <  y ) )
64, 5orbi12d 783 . 2  |-  ( x  =  y  ->  (
( x  =  1  \/  1  <  x
)  <->  ( y  =  1  \/  1  < 
y ) ) )
7 eqeq1 2172 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
x  =  1  <->  (
y  +  1 )  =  1 ) )
8 breq2 3986 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
1  <  x  <->  1  <  ( y  +  1 ) ) )
97, 8orbi12d 783 . 2  |-  ( x  =  ( y  +  1 )  ->  (
( x  =  1  \/  1  <  x
)  <->  ( ( y  +  1 )  =  1  \/  1  < 
( y  +  1 ) ) ) )
10 eqeq1 2172 . . 3  |-  ( x  =  A  ->  (
x  =  1  <->  A  =  1 ) )
11 breq2 3986 . . 3  |-  ( x  =  A  ->  (
1  <  x  <->  1  <  A ) )
1210, 11orbi12d 783 . 2  |-  ( x  =  A  ->  (
( x  =  1  \/  1  <  x
)  <->  ( A  =  1  \/  1  < 
A ) ) )
13 eqid 2165 . . 3  |-  1  =  1
1413orci 721 . 2  |-  ( 1  =  1  \/  1  <  1 )
15 nngt0 8882 . . . . 5  |-  ( y  e.  NN  ->  0  <  y )
16 nnre 8864 . . . . . 6  |-  ( y  e.  NN  ->  y  e.  RR )
17 1re 7898 . . . . . 6  |-  1  e.  RR
18 ltaddpos2 8351 . . . . . 6  |-  ( ( y  e.  RR  /\  1  e.  RR )  ->  ( 0  <  y  <->  1  <  ( y  +  1 ) ) )
1916, 17, 18sylancl 410 . . . . 5  |-  ( y  e.  NN  ->  (
0  <  y  <->  1  <  ( y  +  1 ) ) )
2015, 19mpbid 146 . . . 4  |-  ( y  e.  NN  ->  1  <  ( y  +  1 ) )
2120olcd 724 . . 3  |-  ( y  e.  NN  ->  (
( y  +  1 )  =  1  \/  1  <  ( y  +  1 ) ) )
2221a1d 22 . 2  |-  ( y  e.  NN  ->  (
( y  =  1  \/  1  <  y
)  ->  ( (
y  +  1 )  =  1  \/  1  <  ( y  +  1 ) ) ) )
233, 6, 9, 12, 14, 22nnind 8873 1  |-  ( A  e.  NN  ->  ( A  =  1  \/  1  <  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    \/ wo 698    = wceq 1343    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   RRcr 7752   0cc0 7753   1c1 7754    + caddc 7756    < clt 7933   NNcn 8857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-iota 5153  df-fv 5196  df-ov 5845  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-inn 8858
This theorem is referenced by:  nngt1ne1  8892  resqrexlemglsq  10964
  Copyright terms: Public domain W3C validator