ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn1gt1 Unicode version

Theorem nn1gt1 9016
Description: A positive integer is either one or greater than one. This is for  NN; 0elnn 4651 is a similar theorem for  om (the natural numbers as ordinals). (Contributed by Jim Kingdon, 7-Mar-2020.)
Assertion
Ref Expression
nn1gt1  |-  ( A  e.  NN  ->  ( A  =  1  \/  1  <  A ) )

Proof of Theorem nn1gt1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2200 . . 3  |-  ( x  =  1  ->  (
x  =  1  <->  1  =  1 ) )
2 breq2 4033 . . 3  |-  ( x  =  1  ->  (
1  <  x  <->  1  <  1 ) )
31, 2orbi12d 794 . 2  |-  ( x  =  1  ->  (
( x  =  1  \/  1  <  x
)  <->  ( 1  =  1  \/  1  <  1 ) ) )
4 eqeq1 2200 . . 3  |-  ( x  =  y  ->  (
x  =  1  <->  y  =  1 ) )
5 breq2 4033 . . 3  |-  ( x  =  y  ->  (
1  <  x  <->  1  <  y ) )
64, 5orbi12d 794 . 2  |-  ( x  =  y  ->  (
( x  =  1  \/  1  <  x
)  <->  ( y  =  1  \/  1  < 
y ) ) )
7 eqeq1 2200 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
x  =  1  <->  (
y  +  1 )  =  1 ) )
8 breq2 4033 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
1  <  x  <->  1  <  ( y  +  1 ) ) )
97, 8orbi12d 794 . 2  |-  ( x  =  ( y  +  1 )  ->  (
( x  =  1  \/  1  <  x
)  <->  ( ( y  +  1 )  =  1  \/  1  < 
( y  +  1 ) ) ) )
10 eqeq1 2200 . . 3  |-  ( x  =  A  ->  (
x  =  1  <->  A  =  1 ) )
11 breq2 4033 . . 3  |-  ( x  =  A  ->  (
1  <  x  <->  1  <  A ) )
1210, 11orbi12d 794 . 2  |-  ( x  =  A  ->  (
( x  =  1  \/  1  <  x
)  <->  ( A  =  1  \/  1  < 
A ) ) )
13 eqid 2193 . . 3  |-  1  =  1
1413orci 732 . 2  |-  ( 1  =  1  \/  1  <  1 )
15 nngt0 9007 . . . . 5  |-  ( y  e.  NN  ->  0  <  y )
16 nnre 8989 . . . . . 6  |-  ( y  e.  NN  ->  y  e.  RR )
17 1re 8018 . . . . . 6  |-  1  e.  RR
18 ltaddpos2 8472 . . . . . 6  |-  ( ( y  e.  RR  /\  1  e.  RR )  ->  ( 0  <  y  <->  1  <  ( y  +  1 ) ) )
1916, 17, 18sylancl 413 . . . . 5  |-  ( y  e.  NN  ->  (
0  <  y  <->  1  <  ( y  +  1 ) ) )
2015, 19mpbid 147 . . . 4  |-  ( y  e.  NN  ->  1  <  ( y  +  1 ) )
2120olcd 735 . . 3  |-  ( y  e.  NN  ->  (
( y  +  1 )  =  1  \/  1  <  ( y  +  1 ) ) )
2221a1d 22 . 2  |-  ( y  e.  NN  ->  (
( y  =  1  \/  1  <  y
)  ->  ( (
y  +  1 )  =  1  \/  1  <  ( y  +  1 ) ) ) )
233, 6, 9, 12, 14, 22nnind 8998 1  |-  ( A  e.  NN  ->  ( A  =  1  \/  1  <  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164   class class class wbr 4029  (class class class)co 5918   RRcr 7871   0cc0 7872   1c1 7873    + caddc 7875    < clt 8054   NNcn 8982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-xp 4665  df-cnv 4667  df-iota 5215  df-fv 5262  df-ov 5921  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-inn 8983
This theorem is referenced by:  nngt1ne1  9017  resqrexlemglsq  11166
  Copyright terms: Public domain W3C validator