![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn1gt1 | GIF version |
Description: A positive integer is either one or greater than one. This is for ℕ; 0elnn 4651 is a similar theorem for ω (the natural numbers as ordinals). (Contributed by Jim Kingdon, 7-Mar-2020.) |
Ref | Expression |
---|---|
nn1gt1 | ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ 1 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2200 | . . 3 ⊢ (𝑥 = 1 → (𝑥 = 1 ↔ 1 = 1)) | |
2 | breq2 4033 | . . 3 ⊢ (𝑥 = 1 → (1 < 𝑥 ↔ 1 < 1)) | |
3 | 1, 2 | orbi12d 794 | . 2 ⊢ (𝑥 = 1 → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ (1 = 1 ∨ 1 < 1))) |
4 | eqeq1 2200 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 1 ↔ 𝑦 = 1)) | |
5 | breq2 4033 | . . 3 ⊢ (𝑥 = 𝑦 → (1 < 𝑥 ↔ 1 < 𝑦)) | |
6 | 4, 5 | orbi12d 794 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ (𝑦 = 1 ∨ 1 < 𝑦))) |
7 | eqeq1 2200 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → (𝑥 = 1 ↔ (𝑦 + 1) = 1)) | |
8 | breq2 4033 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → (1 < 𝑥 ↔ 1 < (𝑦 + 1))) | |
9 | 7, 8 | orbi12d 794 | . 2 ⊢ (𝑥 = (𝑦 + 1) → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ ((𝑦 + 1) = 1 ∨ 1 < (𝑦 + 1)))) |
10 | eqeq1 2200 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 1 ↔ 𝐴 = 1)) | |
11 | breq2 4033 | . . 3 ⊢ (𝑥 = 𝐴 → (1 < 𝑥 ↔ 1 < 𝐴)) | |
12 | 10, 11 | orbi12d 794 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ (𝐴 = 1 ∨ 1 < 𝐴))) |
13 | eqid 2193 | . . 3 ⊢ 1 = 1 | |
14 | 13 | orci 732 | . 2 ⊢ (1 = 1 ∨ 1 < 1) |
15 | nngt0 9007 | . . . . 5 ⊢ (𝑦 ∈ ℕ → 0 < 𝑦) | |
16 | nnre 8989 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℝ) | |
17 | 1re 8018 | . . . . . 6 ⊢ 1 ∈ ℝ | |
18 | ltaddpos2 8472 | . . . . . 6 ⊢ ((𝑦 ∈ ℝ ∧ 1 ∈ ℝ) → (0 < 𝑦 ↔ 1 < (𝑦 + 1))) | |
19 | 16, 17, 18 | sylancl 413 | . . . . 5 ⊢ (𝑦 ∈ ℕ → (0 < 𝑦 ↔ 1 < (𝑦 + 1))) |
20 | 15, 19 | mpbid 147 | . . . 4 ⊢ (𝑦 ∈ ℕ → 1 < (𝑦 + 1)) |
21 | 20 | olcd 735 | . . 3 ⊢ (𝑦 ∈ ℕ → ((𝑦 + 1) = 1 ∨ 1 < (𝑦 + 1))) |
22 | 21 | a1d 22 | . 2 ⊢ (𝑦 ∈ ℕ → ((𝑦 = 1 ∨ 1 < 𝑦) → ((𝑦 + 1) = 1 ∨ 1 < (𝑦 + 1)))) |
23 | 3, 6, 9, 12, 14, 22 | nnind 8998 | 1 ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ 1 < 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 (class class class)co 5918 ℝcr 7871 0cc0 7872 1c1 7873 + caddc 7875 < clt 8054 ℕcn 8982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-xp 4665 df-cnv 4667 df-iota 5215 df-fv 5262 df-ov 5921 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-inn 8983 |
This theorem is referenced by: nngt1ne1 9017 resqrexlemglsq 11166 |
Copyright terms: Public domain | W3C validator |