| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nn1gt1 | GIF version | ||
| Description: A positive integer is either one or greater than one. This is for ℕ; 0elnn 4655 is a similar theorem for ω (the natural numbers as ordinals). (Contributed by Jim Kingdon, 7-Mar-2020.) | 
| Ref | Expression | 
|---|---|
| nn1gt1 | ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ 1 < 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqeq1 2203 | . . 3 ⊢ (𝑥 = 1 → (𝑥 = 1 ↔ 1 = 1)) | |
| 2 | breq2 4037 | . . 3 ⊢ (𝑥 = 1 → (1 < 𝑥 ↔ 1 < 1)) | |
| 3 | 1, 2 | orbi12d 794 | . 2 ⊢ (𝑥 = 1 → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ (1 = 1 ∨ 1 < 1))) | 
| 4 | eqeq1 2203 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 1 ↔ 𝑦 = 1)) | |
| 5 | breq2 4037 | . . 3 ⊢ (𝑥 = 𝑦 → (1 < 𝑥 ↔ 1 < 𝑦)) | |
| 6 | 4, 5 | orbi12d 794 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ (𝑦 = 1 ∨ 1 < 𝑦))) | 
| 7 | eqeq1 2203 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → (𝑥 = 1 ↔ (𝑦 + 1) = 1)) | |
| 8 | breq2 4037 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → (1 < 𝑥 ↔ 1 < (𝑦 + 1))) | |
| 9 | 7, 8 | orbi12d 794 | . 2 ⊢ (𝑥 = (𝑦 + 1) → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ ((𝑦 + 1) = 1 ∨ 1 < (𝑦 + 1)))) | 
| 10 | eqeq1 2203 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 1 ↔ 𝐴 = 1)) | |
| 11 | breq2 4037 | . . 3 ⊢ (𝑥 = 𝐴 → (1 < 𝑥 ↔ 1 < 𝐴)) | |
| 12 | 10, 11 | orbi12d 794 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ (𝐴 = 1 ∨ 1 < 𝐴))) | 
| 13 | eqid 2196 | . . 3 ⊢ 1 = 1 | |
| 14 | 13 | orci 732 | . 2 ⊢ (1 = 1 ∨ 1 < 1) | 
| 15 | nngt0 9015 | . . . . 5 ⊢ (𝑦 ∈ ℕ → 0 < 𝑦) | |
| 16 | nnre 8997 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℝ) | |
| 17 | 1re 8025 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 18 | ltaddpos2 8480 | . . . . . 6 ⊢ ((𝑦 ∈ ℝ ∧ 1 ∈ ℝ) → (0 < 𝑦 ↔ 1 < (𝑦 + 1))) | |
| 19 | 16, 17, 18 | sylancl 413 | . . . . 5 ⊢ (𝑦 ∈ ℕ → (0 < 𝑦 ↔ 1 < (𝑦 + 1))) | 
| 20 | 15, 19 | mpbid 147 | . . . 4 ⊢ (𝑦 ∈ ℕ → 1 < (𝑦 + 1)) | 
| 21 | 20 | olcd 735 | . . 3 ⊢ (𝑦 ∈ ℕ → ((𝑦 + 1) = 1 ∨ 1 < (𝑦 + 1))) | 
| 22 | 21 | a1d 22 | . 2 ⊢ (𝑦 ∈ ℕ → ((𝑦 = 1 ∨ 1 < 𝑦) → ((𝑦 + 1) = 1 ∨ 1 < (𝑦 + 1)))) | 
| 23 | 3, 6, 9, 12, 14, 22 | nnind 9006 | 1 ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ 1 < 𝐴)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 (class class class)co 5922 ℝcr 7878 0cc0 7879 1c1 7880 + caddc 7882 < clt 8061 ℕcn 8990 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-iota 5219 df-fv 5266 df-ov 5925 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-inn 8991 | 
| This theorem is referenced by: nngt1ne1 9025 resqrexlemglsq 11187 | 
| Copyright terms: Public domain | W3C validator |