ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn1gt1 GIF version

Theorem nn1gt1 9016
Description: A positive integer is either one or greater than one. This is for ; 0elnn 4651 is a similar theorem for ω (the natural numbers as ordinals). (Contributed by Jim Kingdon, 7-Mar-2020.)
Assertion
Ref Expression
nn1gt1 (𝐴 ∈ ℕ → (𝐴 = 1 ∨ 1 < 𝐴))

Proof of Theorem nn1gt1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2200 . . 3 (𝑥 = 1 → (𝑥 = 1 ↔ 1 = 1))
2 breq2 4033 . . 3 (𝑥 = 1 → (1 < 𝑥 ↔ 1 < 1))
31, 2orbi12d 794 . 2 (𝑥 = 1 → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ (1 = 1 ∨ 1 < 1)))
4 eqeq1 2200 . . 3 (𝑥 = 𝑦 → (𝑥 = 1 ↔ 𝑦 = 1))
5 breq2 4033 . . 3 (𝑥 = 𝑦 → (1 < 𝑥 ↔ 1 < 𝑦))
64, 5orbi12d 794 . 2 (𝑥 = 𝑦 → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ (𝑦 = 1 ∨ 1 < 𝑦)))
7 eqeq1 2200 . . 3 (𝑥 = (𝑦 + 1) → (𝑥 = 1 ↔ (𝑦 + 1) = 1))
8 breq2 4033 . . 3 (𝑥 = (𝑦 + 1) → (1 < 𝑥 ↔ 1 < (𝑦 + 1)))
97, 8orbi12d 794 . 2 (𝑥 = (𝑦 + 1) → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ ((𝑦 + 1) = 1 ∨ 1 < (𝑦 + 1))))
10 eqeq1 2200 . . 3 (𝑥 = 𝐴 → (𝑥 = 1 ↔ 𝐴 = 1))
11 breq2 4033 . . 3 (𝑥 = 𝐴 → (1 < 𝑥 ↔ 1 < 𝐴))
1210, 11orbi12d 794 . 2 (𝑥 = 𝐴 → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ (𝐴 = 1 ∨ 1 < 𝐴)))
13 eqid 2193 . . 3 1 = 1
1413orci 732 . 2 (1 = 1 ∨ 1 < 1)
15 nngt0 9007 . . . . 5 (𝑦 ∈ ℕ → 0 < 𝑦)
16 nnre 8989 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
17 1re 8018 . . . . . 6 1 ∈ ℝ
18 ltaddpos2 8472 . . . . . 6 ((𝑦 ∈ ℝ ∧ 1 ∈ ℝ) → (0 < 𝑦 ↔ 1 < (𝑦 + 1)))
1916, 17, 18sylancl 413 . . . . 5 (𝑦 ∈ ℕ → (0 < 𝑦 ↔ 1 < (𝑦 + 1)))
2015, 19mpbid 147 . . . 4 (𝑦 ∈ ℕ → 1 < (𝑦 + 1))
2120olcd 735 . . 3 (𝑦 ∈ ℕ → ((𝑦 + 1) = 1 ∨ 1 < (𝑦 + 1)))
2221a1d 22 . 2 (𝑦 ∈ ℕ → ((𝑦 = 1 ∨ 1 < 𝑦) → ((𝑦 + 1) = 1 ∨ 1 < (𝑦 + 1))))
233, 6, 9, 12, 14, 22nnind 8998 1 (𝐴 ∈ ℕ → (𝐴 = 1 ∨ 1 < 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wo 709   = wceq 1364  wcel 2164   class class class wbr 4029  (class class class)co 5918  cr 7871  0cc0 7872  1c1 7873   + caddc 7875   < clt 8054  cn 8982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-xp 4665  df-cnv 4667  df-iota 5215  df-fv 5262  df-ov 5921  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-inn 8983
This theorem is referenced by:  nngt1ne1  9017  resqrexlemglsq  11166
  Copyright terms: Public domain W3C validator