ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn1gt1 GIF version

Theorem nn1gt1 9024
Description: A positive integer is either one or greater than one. This is for ; 0elnn 4655 is a similar theorem for ω (the natural numbers as ordinals). (Contributed by Jim Kingdon, 7-Mar-2020.)
Assertion
Ref Expression
nn1gt1 (𝐴 ∈ ℕ → (𝐴 = 1 ∨ 1 < 𝐴))

Proof of Theorem nn1gt1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2203 . . 3 (𝑥 = 1 → (𝑥 = 1 ↔ 1 = 1))
2 breq2 4037 . . 3 (𝑥 = 1 → (1 < 𝑥 ↔ 1 < 1))
31, 2orbi12d 794 . 2 (𝑥 = 1 → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ (1 = 1 ∨ 1 < 1)))
4 eqeq1 2203 . . 3 (𝑥 = 𝑦 → (𝑥 = 1 ↔ 𝑦 = 1))
5 breq2 4037 . . 3 (𝑥 = 𝑦 → (1 < 𝑥 ↔ 1 < 𝑦))
64, 5orbi12d 794 . 2 (𝑥 = 𝑦 → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ (𝑦 = 1 ∨ 1 < 𝑦)))
7 eqeq1 2203 . . 3 (𝑥 = (𝑦 + 1) → (𝑥 = 1 ↔ (𝑦 + 1) = 1))
8 breq2 4037 . . 3 (𝑥 = (𝑦 + 1) → (1 < 𝑥 ↔ 1 < (𝑦 + 1)))
97, 8orbi12d 794 . 2 (𝑥 = (𝑦 + 1) → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ ((𝑦 + 1) = 1 ∨ 1 < (𝑦 + 1))))
10 eqeq1 2203 . . 3 (𝑥 = 𝐴 → (𝑥 = 1 ↔ 𝐴 = 1))
11 breq2 4037 . . 3 (𝑥 = 𝐴 → (1 < 𝑥 ↔ 1 < 𝐴))
1210, 11orbi12d 794 . 2 (𝑥 = 𝐴 → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ (𝐴 = 1 ∨ 1 < 𝐴)))
13 eqid 2196 . . 3 1 = 1
1413orci 732 . 2 (1 = 1 ∨ 1 < 1)
15 nngt0 9015 . . . . 5 (𝑦 ∈ ℕ → 0 < 𝑦)
16 nnre 8997 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
17 1re 8025 . . . . . 6 1 ∈ ℝ
18 ltaddpos2 8480 . . . . . 6 ((𝑦 ∈ ℝ ∧ 1 ∈ ℝ) → (0 < 𝑦 ↔ 1 < (𝑦 + 1)))
1916, 17, 18sylancl 413 . . . . 5 (𝑦 ∈ ℕ → (0 < 𝑦 ↔ 1 < (𝑦 + 1)))
2015, 19mpbid 147 . . . 4 (𝑦 ∈ ℕ → 1 < (𝑦 + 1))
2120olcd 735 . . 3 (𝑦 ∈ ℕ → ((𝑦 + 1) = 1 ∨ 1 < (𝑦 + 1)))
2221a1d 22 . 2 (𝑦 ∈ ℕ → ((𝑦 = 1 ∨ 1 < 𝑦) → ((𝑦 + 1) = 1 ∨ 1 < (𝑦 + 1))))
233, 6, 9, 12, 14, 22nnind 9006 1 (𝐴 ∈ ℕ → (𝐴 = 1 ∨ 1 < 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wo 709   = wceq 1364  wcel 2167   class class class wbr 4033  (class class class)co 5922  cr 7878  0cc0 7879  1c1 7880   + caddc 7882   < clt 8061  cn 8990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-xp 4669  df-cnv 4671  df-iota 5219  df-fv 5266  df-ov 5925  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-inn 8991
This theorem is referenced by:  nngt1ne1  9025  resqrexlemglsq  11187
  Copyright terms: Public domain W3C validator