ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn1gt1 GIF version

Theorem nn1gt1 9105
Description: A positive integer is either one or greater than one. This is for ; 0elnn 4685 is a similar theorem for ω (the natural numbers as ordinals). (Contributed by Jim Kingdon, 7-Mar-2020.)
Assertion
Ref Expression
nn1gt1 (𝐴 ∈ ℕ → (𝐴 = 1 ∨ 1 < 𝐴))

Proof of Theorem nn1gt1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2214 . . 3 (𝑥 = 1 → (𝑥 = 1 ↔ 1 = 1))
2 breq2 4063 . . 3 (𝑥 = 1 → (1 < 𝑥 ↔ 1 < 1))
31, 2orbi12d 795 . 2 (𝑥 = 1 → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ (1 = 1 ∨ 1 < 1)))
4 eqeq1 2214 . . 3 (𝑥 = 𝑦 → (𝑥 = 1 ↔ 𝑦 = 1))
5 breq2 4063 . . 3 (𝑥 = 𝑦 → (1 < 𝑥 ↔ 1 < 𝑦))
64, 5orbi12d 795 . 2 (𝑥 = 𝑦 → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ (𝑦 = 1 ∨ 1 < 𝑦)))
7 eqeq1 2214 . . 3 (𝑥 = (𝑦 + 1) → (𝑥 = 1 ↔ (𝑦 + 1) = 1))
8 breq2 4063 . . 3 (𝑥 = (𝑦 + 1) → (1 < 𝑥 ↔ 1 < (𝑦 + 1)))
97, 8orbi12d 795 . 2 (𝑥 = (𝑦 + 1) → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ ((𝑦 + 1) = 1 ∨ 1 < (𝑦 + 1))))
10 eqeq1 2214 . . 3 (𝑥 = 𝐴 → (𝑥 = 1 ↔ 𝐴 = 1))
11 breq2 4063 . . 3 (𝑥 = 𝐴 → (1 < 𝑥 ↔ 1 < 𝐴))
1210, 11orbi12d 795 . 2 (𝑥 = 𝐴 → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ (𝐴 = 1 ∨ 1 < 𝐴)))
13 eqid 2207 . . 3 1 = 1
1413orci 733 . 2 (1 = 1 ∨ 1 < 1)
15 nngt0 9096 . . . . 5 (𝑦 ∈ ℕ → 0 < 𝑦)
16 nnre 9078 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
17 1re 8106 . . . . . 6 1 ∈ ℝ
18 ltaddpos2 8561 . . . . . 6 ((𝑦 ∈ ℝ ∧ 1 ∈ ℝ) → (0 < 𝑦 ↔ 1 < (𝑦 + 1)))
1916, 17, 18sylancl 413 . . . . 5 (𝑦 ∈ ℕ → (0 < 𝑦 ↔ 1 < (𝑦 + 1)))
2015, 19mpbid 147 . . . 4 (𝑦 ∈ ℕ → 1 < (𝑦 + 1))
2120olcd 736 . . 3 (𝑦 ∈ ℕ → ((𝑦 + 1) = 1 ∨ 1 < (𝑦 + 1)))
2221a1d 22 . 2 (𝑦 ∈ ℕ → ((𝑦 = 1 ∨ 1 < 𝑦) → ((𝑦 + 1) = 1 ∨ 1 < (𝑦 + 1))))
233, 6, 9, 12, 14, 22nnind 9087 1 (𝐴 ∈ ℕ → (𝐴 = 1 ∨ 1 < 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wo 710   = wceq 1373  wcel 2178   class class class wbr 4059  (class class class)co 5967  cr 7959  0cc0 7960  1c1 7961   + caddc 7963   < clt 8142  cn 9071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-xp 4699  df-cnv 4701  df-iota 5251  df-fv 5298  df-ov 5970  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-inn 9072
This theorem is referenced by:  nngt1ne1  9106  resqrexlemglsq  11448
  Copyright terms: Public domain W3C validator