| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn1gt1 | GIF version | ||
| Description: A positive integer is either one or greater than one. This is for ℕ; 0elnn 4685 is a similar theorem for ω (the natural numbers as ordinals). (Contributed by Jim Kingdon, 7-Mar-2020.) |
| Ref | Expression |
|---|---|
| nn1gt1 | ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ 1 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2214 | . . 3 ⊢ (𝑥 = 1 → (𝑥 = 1 ↔ 1 = 1)) | |
| 2 | breq2 4063 | . . 3 ⊢ (𝑥 = 1 → (1 < 𝑥 ↔ 1 < 1)) | |
| 3 | 1, 2 | orbi12d 795 | . 2 ⊢ (𝑥 = 1 → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ (1 = 1 ∨ 1 < 1))) |
| 4 | eqeq1 2214 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 1 ↔ 𝑦 = 1)) | |
| 5 | breq2 4063 | . . 3 ⊢ (𝑥 = 𝑦 → (1 < 𝑥 ↔ 1 < 𝑦)) | |
| 6 | 4, 5 | orbi12d 795 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ (𝑦 = 1 ∨ 1 < 𝑦))) |
| 7 | eqeq1 2214 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → (𝑥 = 1 ↔ (𝑦 + 1) = 1)) | |
| 8 | breq2 4063 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → (1 < 𝑥 ↔ 1 < (𝑦 + 1))) | |
| 9 | 7, 8 | orbi12d 795 | . 2 ⊢ (𝑥 = (𝑦 + 1) → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ ((𝑦 + 1) = 1 ∨ 1 < (𝑦 + 1)))) |
| 10 | eqeq1 2214 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 1 ↔ 𝐴 = 1)) | |
| 11 | breq2 4063 | . . 3 ⊢ (𝑥 = 𝐴 → (1 < 𝑥 ↔ 1 < 𝐴)) | |
| 12 | 10, 11 | orbi12d 795 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ (𝐴 = 1 ∨ 1 < 𝐴))) |
| 13 | eqid 2207 | . . 3 ⊢ 1 = 1 | |
| 14 | 13 | orci 733 | . 2 ⊢ (1 = 1 ∨ 1 < 1) |
| 15 | nngt0 9096 | . . . . 5 ⊢ (𝑦 ∈ ℕ → 0 < 𝑦) | |
| 16 | nnre 9078 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℝ) | |
| 17 | 1re 8106 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 18 | ltaddpos2 8561 | . . . . . 6 ⊢ ((𝑦 ∈ ℝ ∧ 1 ∈ ℝ) → (0 < 𝑦 ↔ 1 < (𝑦 + 1))) | |
| 19 | 16, 17, 18 | sylancl 413 | . . . . 5 ⊢ (𝑦 ∈ ℕ → (0 < 𝑦 ↔ 1 < (𝑦 + 1))) |
| 20 | 15, 19 | mpbid 147 | . . . 4 ⊢ (𝑦 ∈ ℕ → 1 < (𝑦 + 1)) |
| 21 | 20 | olcd 736 | . . 3 ⊢ (𝑦 ∈ ℕ → ((𝑦 + 1) = 1 ∨ 1 < (𝑦 + 1))) |
| 22 | 21 | a1d 22 | . 2 ⊢ (𝑦 ∈ ℕ → ((𝑦 = 1 ∨ 1 < 𝑦) → ((𝑦 + 1) = 1 ∨ 1 < (𝑦 + 1)))) |
| 23 | 3, 6, 9, 12, 14, 22 | nnind 9087 | 1 ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ 1 < 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 710 = wceq 1373 ∈ wcel 2178 class class class wbr 4059 (class class class)co 5967 ℝcr 7959 0cc0 7960 1c1 7961 + caddc 7963 < clt 8142 ℕcn 9071 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-xp 4699 df-cnv 4701 df-iota 5251 df-fv 5298 df-ov 5970 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-inn 9072 |
| This theorem is referenced by: nngt1ne1 9106 resqrexlemglsq 11448 |
| Copyright terms: Public domain | W3C validator |