ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nncand Unicode version

Theorem nncand 8450
Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1  |-  ( ph  ->  A  e.  CC )
pncand.2  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
nncand  |-  ( ph  ->  ( A  -  ( A  -  B )
)  =  B )

Proof of Theorem nncand
StepHypRef Expression
1 negidd.1 . 2  |-  ( ph  ->  A  e.  CC )
2 pncand.2 . 2  |-  ( ph  ->  B  e.  CC )
3 nncan 8363 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  ( A  -  B )
)  =  B )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  ( A  -  ( A  -  B )
)  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200  (class class class)co 5994   CCcc 7985    - cmin 8305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-setind 4626  ax-resscn 8079  ax-1cn 8080  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-distr 8091  ax-i2m1 8092  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-iota 5274  df-fun 5316  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-sub 8307
This theorem is referenced by:  modqdiffl  10544  flqmod  10547  ccatswrd  11188  fprodrev  12116  efaddlem  12171  cos12dec  12265  4sqlem5  12891  mul4sqlem  12902  4sqlem14  12913  znunit  14608  blssps  15086  blss  15087  ivthinclemuopn  15297  sin0pilem1  15440  gausslemma2dlem1a  15722  lgsquadlem1  15741
  Copyright terms: Public domain W3C validator