ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sin0pilem1 Unicode version

Theorem sin0pilem1 14172
Description: Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
Assertion
Ref Expression
sin0pilem1  |-  E. p  e.  ( 1 (,) 2
) ( ( cos `  p )  =  0  /\  A. x  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  x ) )
Distinct variable group:    x, p

Proof of Theorem sin0pilem1
StepHypRef Expression
1 cosz12 14171 . 2  |-  E. p  e.  ( 1 (,) 2
) ( cos `  p
)  =  0
2 simpr 110 . . . . 5  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p )  =  0 )  -> 
( cos `  p
)  =  0 )
3 2re 8988 . . . . . . . . . . . 12  |-  2  e.  RR
43a1i 9 . . . . . . . . . . 11  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  2  e.  RR )
5 elioore 9911 . . . . . . . . . . . 12  |-  ( p  e.  ( 1 (,) 2 )  ->  p  e.  RR )
65ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  p  e.  RR )
74, 6remulcld 7987 . . . . . . . . . 10  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( 2  x.  p )  e.  RR )
8 elioore 9911 . . . . . . . . . . 11  |-  ( x  e.  ( p (,) ( 2  x.  p
) )  ->  x  e.  RR )
98adantl 277 . . . . . . . . . 10  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  x  e.  RR )
107, 9resubcld 8337 . . . . . . . . 9  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
2  x.  p )  -  x )  e.  RR )
11 eliooord 9927 . . . . . . . . . . . 12  |-  ( x  e.  ( p (,) ( 2  x.  p
) )  ->  (
p  <  x  /\  x  <  ( 2  x.  p ) ) )
1211simprd 114 . . . . . . . . . . 11  |-  ( x  e.  ( p (,) ( 2  x.  p
) )  ->  x  <  ( 2  x.  p
) )
1312adantl 277 . . . . . . . . . 10  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  x  <  ( 2  x.  p ) )
149, 7posdifd 8488 . . . . . . . . . 10  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( x  <  ( 2  x.  p
)  <->  0  <  (
( 2  x.  p
)  -  x ) ) )
1513, 14mpbid 147 . . . . . . . . 9  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  0  <  ( ( 2  x.  p
)  -  x ) )
1611simpld 112 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( p (,) ( 2  x.  p
) )  ->  p  <  x )
1716adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  p  <  x )
186, 9, 7, 17ltsub2dd 8514 . . . . . . . . . . . . . 14  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
2  x.  p )  -  x )  < 
( ( 2  x.  p )  -  p
) )
196recnd 7985 . . . . . . . . . . . . . . . 16  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  p  e.  CC )
2019mulid2d 7975 . . . . . . . . . . . . . . 15  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( 1  x.  p )  =  p )
2120oveq2d 5890 . . . . . . . . . . . . . 14  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
2  x.  p )  -  ( 1  x.  p ) )  =  ( ( 2  x.  p )  -  p
) )
2218, 21breqtrrd 4031 . . . . . . . . . . . . 13  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
2  x.  p )  -  x )  < 
( ( 2  x.  p )  -  (
1  x.  p ) ) )
234recnd 7985 . . . . . . . . . . . . . 14  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  2  e.  CC )
24 1cnd 7972 . . . . . . . . . . . . . 14  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  1  e.  CC )
2523, 24, 19subdird 8371 . . . . . . . . . . . . 13  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
2  -  1 )  x.  p )  =  ( ( 2  x.  p )  -  (
1  x.  p ) ) )
2622, 25breqtrrd 4031 . . . . . . . . . . . 12  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
2  x.  p )  -  x )  < 
( ( 2  -  1 )  x.  p
) )
27 2m1e1 9036 . . . . . . . . . . . . . 14  |-  ( 2  -  1 )  =  1
2827oveq1i 5884 . . . . . . . . . . . . 13  |-  ( ( 2  -  1 )  x.  p )  =  ( 1  x.  p
)
2928, 20eqtrid 2222 . . . . . . . . . . . 12  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
2  -  1 )  x.  p )  =  p )
3026, 29breqtrd 4029 . . . . . . . . . . 11  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
2  x.  p )  -  x )  < 
p )
31 eliooord 9927 . . . . . . . . . . . . 13  |-  ( p  e.  ( 1 (,) 2 )  ->  (
1  <  p  /\  p  <  2 ) )
3231simprd 114 . . . . . . . . . . . 12  |-  ( p  e.  ( 1 (,) 2 )  ->  p  <  2 )
3332ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  p  <  2 )
3410, 6, 4, 30, 33lttrd 8082 . . . . . . . . . 10  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
2  x.  p )  -  x )  <  2 )
3510, 4, 34ltled 8075 . . . . . . . . 9  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
2  x.  p )  -  x )  <_ 
2 )
36 0xr 8003 . . . . . . . . . 10  |-  0  e.  RR*
37 elioc2 9935 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  2  e.  RR )  ->  (
( ( 2  x.  p )  -  x
)  e.  ( 0 (,] 2 )  <->  ( (
( 2  x.  p
)  -  x )  e.  RR  /\  0  <  ( ( 2  x.  p )  -  x
)  /\  ( (
2  x.  p )  -  x )  <_ 
2 ) ) )
3836, 3, 37mp2an 426 . . . . . . . . 9  |-  ( ( ( 2  x.  p
)  -  x )  e.  ( 0 (,] 2 )  <->  ( (
( 2  x.  p
)  -  x )  e.  RR  /\  0  <  ( ( 2  x.  p )  -  x
)  /\  ( (
2  x.  p )  -  x )  <_ 
2 ) )
3910, 15, 35, 38syl3anbrc 1181 . . . . . . . 8  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
2  x.  p )  -  x )  e.  ( 0 (,] 2
) )
40 sin02gt0 11770 . . . . . . . 8  |-  ( ( ( 2  x.  p
)  -  x )  e.  ( 0 (,] 2 )  ->  0  <  ( sin `  (
( 2  x.  p
)  -  x ) ) )
4139, 40syl 14 . . . . . . 7  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  0  <  ( sin `  ( ( 2  x.  p )  -  x ) ) )
427recnd 7985 . . . . . . . . . . . 12  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( 2  x.  p )  e.  CC )
439recnd 7985 . . . . . . . . . . . . 13  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  x  e.  CC )
4442, 43subcld 8267 . . . . . . . . . . . 12  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
2  x.  p )  -  x )  e.  CC )
45 sinsub 11747 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  p
)  e.  CC  /\  ( ( 2  x.  p )  -  x
)  e.  CC )  ->  ( sin `  (
( 2  x.  p
)  -  ( ( 2  x.  p )  -  x ) ) )  =  ( ( ( sin `  (
2  x.  p ) )  x.  ( cos `  ( ( 2  x.  p )  -  x
) ) )  -  ( ( cos `  (
2  x.  p ) )  x.  ( sin `  ( ( 2  x.  p )  -  x
) ) ) ) )
4642, 44, 45syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( sin `  ( ( 2  x.  p )  -  (
( 2  x.  p
)  -  x ) ) )  =  ( ( ( sin `  (
2  x.  p ) )  x.  ( cos `  ( ( 2  x.  p )  -  x
) ) )  -  ( ( cos `  (
2  x.  p ) )  x.  ( sin `  ( ( 2  x.  p )  -  x
) ) ) ) )
4742, 43nncand 8272 . . . . . . . . . . . 12  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
2  x.  p )  -  ( ( 2  x.  p )  -  x ) )  =  x )
4847fveq2d 5519 . . . . . . . . . . 11  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( sin `  ( ( 2  x.  p )  -  (
( 2  x.  p
)  -  x ) ) )  =  ( sin `  x ) )
49 cos2t 11757 . . . . . . . . . . . . . . . 16  |-  ( p  e.  CC  ->  ( cos `  ( 2  x.  p ) )  =  ( ( 2  x.  ( ( cos `  p
) ^ 2 ) )  -  1 ) )
5019, 49syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( cos `  ( 2  x.  p
) )  =  ( ( 2  x.  (
( cos `  p
) ^ 2 ) )  -  1 ) )
51 simplr 528 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( cos `  p )  =  0 )
5251sq0id 10612 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( ( cos `  p ) ^
2 )  =  0 )
5352oveq2d 5890 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( 2  x.  ( ( cos `  p ) ^ 2 ) )  =  ( 2  x.  0 ) )
54 2t0e0 9077 . . . . . . . . . . . . . . . . . 18  |-  ( 2  x.  0 )  =  0
5553, 54eqtrdi 2226 . . . . . . . . . . . . . . . . 17  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( 2  x.  ( ( cos `  p ) ^ 2 ) )  =  0 )
5655oveq1d 5889 . . . . . . . . . . . . . . . 16  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
2  x.  ( ( cos `  p ) ^ 2 ) )  -  1 )  =  ( 0  -  1 ) )
57 df-neg 8130 . . . . . . . . . . . . . . . 16  |-  -u 1  =  ( 0  -  1 )
5856, 57eqtr4di 2228 . . . . . . . . . . . . . . 15  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
2  x.  ( ( cos `  p ) ^ 2 ) )  -  1 )  = 
-u 1 )
5950, 58eqtrd 2210 . . . . . . . . . . . . . 14  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( cos `  ( 2  x.  p
) )  =  -u
1 )
6059oveq1d 5889 . . . . . . . . . . . . 13  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( ( cos `  ( 2  x.  p ) )  x.  ( sin `  (
( 2  x.  p
)  -  x ) ) )  =  (
-u 1  x.  ( sin `  ( ( 2  x.  p )  -  x ) ) ) )
6144sincld 11717 . . . . . . . . . . . . . 14  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( sin `  ( ( 2  x.  p )  -  x
) )  e.  CC )
6261mulm1d 8366 . . . . . . . . . . . . 13  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( -u 1  x.  ( sin `  (
( 2  x.  p
)  -  x ) ) )  =  -u ( sin `  ( ( 2  x.  p )  -  x ) ) )
6360, 62eqtrd 2210 . . . . . . . . . . . 12  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( ( cos `  ( 2  x.  p ) )  x.  ( sin `  (
( 2  x.  p
)  -  x ) ) )  =  -u ( sin `  ( ( 2  x.  p )  -  x ) ) )
6463oveq2d 5890 . . . . . . . . . . 11  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
( sin `  (
2  x.  p ) )  x.  ( cos `  ( ( 2  x.  p )  -  x
) ) )  -  ( ( cos `  (
2  x.  p ) )  x.  ( sin `  ( ( 2  x.  p )  -  x
) ) ) )  =  ( ( ( sin `  ( 2  x.  p ) )  x.  ( cos `  (
( 2  x.  p
)  -  x ) ) )  -  -u ( sin `  ( ( 2  x.  p )  -  x ) ) ) )
6546, 48, 643eqtr3d 2218 . . . . . . . . . 10  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( sin `  x )  =  ( ( ( sin `  (
2  x.  p ) )  x.  ( cos `  ( ( 2  x.  p )  -  x
) ) )  -  -u ( sin `  (
( 2  x.  p
)  -  x ) ) ) )
6642sincld 11717 . . . . . . . . . . . 12  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( sin `  ( 2  x.  p
) )  e.  CC )
6744coscld 11718 . . . . . . . . . . . 12  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( cos `  ( ( 2  x.  p )  -  x
) )  e.  CC )
6866, 67mulcld 7977 . . . . . . . . . . 11  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( ( sin `  ( 2  x.  p ) )  x.  ( cos `  (
( 2  x.  p
)  -  x ) ) )  e.  CC )
6968, 61subnegd 8274 . . . . . . . . . 10  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
( sin `  (
2  x.  p ) )  x.  ( cos `  ( ( 2  x.  p )  -  x
) ) )  -  -u ( sin `  (
( 2  x.  p
)  -  x ) ) )  =  ( ( ( sin `  (
2  x.  p ) )  x.  ( cos `  ( ( 2  x.  p )  -  x
) ) )  +  ( sin `  (
( 2  x.  p
)  -  x ) ) ) )
7065, 69eqtrd 2210 . . . . . . . . 9  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( sin `  x )  =  ( ( ( sin `  (
2  x.  p ) )  x.  ( cos `  ( ( 2  x.  p )  -  x
) ) )  +  ( sin `  (
( 2  x.  p
)  -  x ) ) ) )
71 sin2t 11756 . . . . . . . . . . . . . 14  |-  ( p  e.  CC  ->  ( sin `  ( 2  x.  p ) )  =  ( 2  x.  (
( sin `  p
)  x.  ( cos `  p ) ) ) )
7219, 71syl 14 . . . . . . . . . . . . 13  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( sin `  ( 2  x.  p
) )  =  ( 2  x.  ( ( sin `  p )  x.  ( cos `  p
) ) ) )
7351oveq2d 5890 . . . . . . . . . . . . . . . 16  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( ( sin `  p )  x.  ( cos `  p
) )  =  ( ( sin `  p
)  x.  0 ) )
7419sincld 11717 . . . . . . . . . . . . . . . . 17  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( sin `  p )  e.  CC )
7574mul01d 8349 . . . . . . . . . . . . . . . 16  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( ( sin `  p )  x.  0 )  =  0 )
7673, 75eqtrd 2210 . . . . . . . . . . . . . . 15  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( ( sin `  p )  x.  ( cos `  p
) )  =  0 )
7776oveq2d 5890 . . . . . . . . . . . . . 14  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( 2  x.  ( ( sin `  p )  x.  ( cos `  p ) ) )  =  ( 2  x.  0 ) )
7877, 54eqtrdi 2226 . . . . . . . . . . . . 13  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( 2  x.  ( ( sin `  p )  x.  ( cos `  p ) ) )  =  0 )
7972, 78eqtrd 2210 . . . . . . . . . . . 12  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( sin `  ( 2  x.  p
) )  =  0 )
8079oveq1d 5889 . . . . . . . . . . 11  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( ( sin `  ( 2  x.  p ) )  x.  ( cos `  (
( 2  x.  p
)  -  x ) ) )  =  ( 0  x.  ( cos `  ( ( 2  x.  p )  -  x
) ) ) )
8167mul02d 8348 . . . . . . . . . . 11  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( 0  x.  ( cos `  (
( 2  x.  p
)  -  x ) ) )  =  0 )
8280, 81eqtrd 2210 . . . . . . . . . 10  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( ( sin `  ( 2  x.  p ) )  x.  ( cos `  (
( 2  x.  p
)  -  x ) ) )  =  0 )
8382oveq1d 5889 . . . . . . . . 9  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
( sin `  (
2  x.  p ) )  x.  ( cos `  ( ( 2  x.  p )  -  x
) ) )  +  ( sin `  (
( 2  x.  p
)  -  x ) ) )  =  ( 0  +  ( sin `  ( ( 2  x.  p )  -  x
) ) ) )
8470, 83eqtrd 2210 . . . . . . . 8  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( sin `  x )  =  ( 0  +  ( sin `  ( ( 2  x.  p )  -  x
) ) ) )
8561addid2d 8106 . . . . . . . 8  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( 0  +  ( sin `  (
( 2  x.  p
)  -  x ) ) )  =  ( sin `  ( ( 2  x.  p )  -  x ) ) )
8684, 85eqtrd 2210 . . . . . . 7  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( sin `  x )  =  ( sin `  ( ( 2  x.  p )  -  x ) ) )
8741, 86breqtrrd 4031 . . . . . 6  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  0  <  ( sin `  x ) )
8887ralrimiva 2550 . . . . 5  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p )  =  0 )  ->  A. x  e.  (
p (,) ( 2  x.  p ) ) 0  <  ( sin `  x ) )
892, 88jca 306 . . . 4  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p )  =  0 )  -> 
( ( cos `  p
)  =  0  /\ 
A. x  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  x ) ) )
9089ex 115 . . 3  |-  ( p  e.  ( 1 (,) 2 )  ->  (
( cos `  p
)  =  0  -> 
( ( cos `  p
)  =  0  /\ 
A. x  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  x ) ) ) )
9190reximia 2572 . 2  |-  ( E. p  e.  ( 1 (,) 2 ) ( cos `  p )  =  0  ->  E. p  e.  ( 1 (,) 2
) ( ( cos `  p )  =  0  /\  A. x  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  x ) ) )
921, 91ax-mp 5 1  |-  E. p  e.  ( 1 (,) 2
) ( ( cos `  p )  =  0  /\  A. x  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  x ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   class class class wbr 4003   ` cfv 5216  (class class class)co 5874   CCcc 7808   RRcr 7809   0cc0 7810   1c1 7811    + caddc 7813    x. cmul 7815   RR*cxr 7990    < clt 7991    <_ cle 7992    - cmin 8127   -ucneg 8128   2c2 8969   (,)cioo 9887   (,]cioc 9888   ^cexp 10518   sincsin 11651   cosccos 11652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929  ax-caucvg 7930  ax-pre-suploc 7931  ax-addf 7932  ax-mulf 7933
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-disj 3981  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-isom 5225  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-of 6082  df-1st 6140  df-2nd 6141  df-recs 6305  df-irdg 6370  df-frec 6391  df-1o 6416  df-oadd 6420  df-er 6534  df-map 6649  df-pm 6650  df-en 6740  df-dom 6741  df-fin 6742  df-sup 6982  df-inf 6983  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629  df-inn 8919  df-2 8977  df-3 8978  df-4 8979  df-5 8980  df-6 8981  df-7 8982  df-8 8983  df-9 8984  df-n0 9176  df-z 9253  df-uz 9528  df-q 9619  df-rp 9653  df-xneg 9771  df-xadd 9772  df-ioo 9891  df-ioc 9892  df-ico 9893  df-icc 9894  df-fz 10008  df-fzo 10142  df-seqfrec 10445  df-exp 10519  df-fac 10705  df-bc 10727  df-ihash 10755  df-shft 10823  df-cj 10850  df-re 10851  df-im 10852  df-rsqrt 11006  df-abs 11007  df-clim 11286  df-sumdc 11361  df-ef 11655  df-sin 11657  df-cos 11658  df-rest 12689  df-topgen 12708  df-psmet 13417  df-xmet 13418  df-met 13419  df-bl 13420  df-mopn 13421  df-top 13468  df-topon 13481  df-bases 13513  df-ntr 13566  df-cn 13658  df-cnp 13659  df-tx 13723  df-cncf 14028  df-limced 14095  df-dvap 14096
This theorem is referenced by:  sin0pilem2  14173
  Copyright terms: Public domain W3C validator