ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sin0pilem1 Unicode version

Theorem sin0pilem1 14473
Description: Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
Assertion
Ref Expression
sin0pilem1  |-  E. p  e.  ( 1 (,) 2
) ( ( cos `  p )  =  0  /\  A. x  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  x ) )
Distinct variable group:    x, p

Proof of Theorem sin0pilem1
StepHypRef Expression
1 cosz12 14472 . 2  |-  E. p  e.  ( 1 (,) 2
) ( cos `  p
)  =  0
2 simpr 110 . . . . 5  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p )  =  0 )  -> 
( cos `  p
)  =  0 )
3 2re 9002 . . . . . . . . . . . 12  |-  2  e.  RR
43a1i 9 . . . . . . . . . . 11  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  2  e.  RR )
5 elioore 9925 . . . . . . . . . . . 12  |-  ( p  e.  ( 1 (,) 2 )  ->  p  e.  RR )
65ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  p  e.  RR )
74, 6remulcld 8001 . . . . . . . . . 10  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( 2  x.  p )  e.  RR )
8 elioore 9925 . . . . . . . . . . 11  |-  ( x  e.  ( p (,) ( 2  x.  p
) )  ->  x  e.  RR )
98adantl 277 . . . . . . . . . 10  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  x  e.  RR )
107, 9resubcld 8351 . . . . . . . . 9  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
2  x.  p )  -  x )  e.  RR )
11 eliooord 9941 . . . . . . . . . . . 12  |-  ( x  e.  ( p (,) ( 2  x.  p
) )  ->  (
p  <  x  /\  x  <  ( 2  x.  p ) ) )
1211simprd 114 . . . . . . . . . . 11  |-  ( x  e.  ( p (,) ( 2  x.  p
) )  ->  x  <  ( 2  x.  p
) )
1312adantl 277 . . . . . . . . . 10  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  x  <  ( 2  x.  p ) )
149, 7posdifd 8502 . . . . . . . . . 10  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( x  <  ( 2  x.  p
)  <->  0  <  (
( 2  x.  p
)  -  x ) ) )
1513, 14mpbid 147 . . . . . . . . 9  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  0  <  ( ( 2  x.  p
)  -  x ) )
1611simpld 112 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( p (,) ( 2  x.  p
) )  ->  p  <  x )
1716adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  p  <  x )
186, 9, 7, 17ltsub2dd 8528 . . . . . . . . . . . . . 14  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
2  x.  p )  -  x )  < 
( ( 2  x.  p )  -  p
) )
196recnd 7999 . . . . . . . . . . . . . . . 16  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  p  e.  CC )
2019mulid2d 7989 . . . . . . . . . . . . . . 15  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( 1  x.  p )  =  p )
2120oveq2d 5904 . . . . . . . . . . . . . 14  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
2  x.  p )  -  ( 1  x.  p ) )  =  ( ( 2  x.  p )  -  p
) )
2218, 21breqtrrd 4043 . . . . . . . . . . . . 13  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
2  x.  p )  -  x )  < 
( ( 2  x.  p )  -  (
1  x.  p ) ) )
234recnd 7999 . . . . . . . . . . . . . 14  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  2  e.  CC )
24 1cnd 7986 . . . . . . . . . . . . . 14  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  1  e.  CC )
2523, 24, 19subdird 8385 . . . . . . . . . . . . 13  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
2  -  1 )  x.  p )  =  ( ( 2  x.  p )  -  (
1  x.  p ) ) )
2622, 25breqtrrd 4043 . . . . . . . . . . . 12  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
2  x.  p )  -  x )  < 
( ( 2  -  1 )  x.  p
) )
27 2m1e1 9050 . . . . . . . . . . . . . 14  |-  ( 2  -  1 )  =  1
2827oveq1i 5898 . . . . . . . . . . . . 13  |-  ( ( 2  -  1 )  x.  p )  =  ( 1  x.  p
)
2928, 20eqtrid 2232 . . . . . . . . . . . 12  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
2  -  1 )  x.  p )  =  p )
3026, 29breqtrd 4041 . . . . . . . . . . 11  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
2  x.  p )  -  x )  < 
p )
31 eliooord 9941 . . . . . . . . . . . . 13  |-  ( p  e.  ( 1 (,) 2 )  ->  (
1  <  p  /\  p  <  2 ) )
3231simprd 114 . . . . . . . . . . . 12  |-  ( p  e.  ( 1 (,) 2 )  ->  p  <  2 )
3332ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  p  <  2 )
3410, 6, 4, 30, 33lttrd 8096 . . . . . . . . . 10  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
2  x.  p )  -  x )  <  2 )
3510, 4, 34ltled 8089 . . . . . . . . 9  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
2  x.  p )  -  x )  <_ 
2 )
36 0xr 8017 . . . . . . . . . 10  |-  0  e.  RR*
37 elioc2 9949 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  2  e.  RR )  ->  (
( ( 2  x.  p )  -  x
)  e.  ( 0 (,] 2 )  <->  ( (
( 2  x.  p
)  -  x )  e.  RR  /\  0  <  ( ( 2  x.  p )  -  x
)  /\  ( (
2  x.  p )  -  x )  <_ 
2 ) ) )
3836, 3, 37mp2an 426 . . . . . . . . 9  |-  ( ( ( 2  x.  p
)  -  x )  e.  ( 0 (,] 2 )  <->  ( (
( 2  x.  p
)  -  x )  e.  RR  /\  0  <  ( ( 2  x.  p )  -  x
)  /\  ( (
2  x.  p )  -  x )  <_ 
2 ) )
3910, 15, 35, 38syl3anbrc 1182 . . . . . . . 8  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
2  x.  p )  -  x )  e.  ( 0 (,] 2
) )
40 sin02gt0 11784 . . . . . . . 8  |-  ( ( ( 2  x.  p
)  -  x )  e.  ( 0 (,] 2 )  ->  0  <  ( sin `  (
( 2  x.  p
)  -  x ) ) )
4139, 40syl 14 . . . . . . 7  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  0  <  ( sin `  ( ( 2  x.  p )  -  x ) ) )
427recnd 7999 . . . . . . . . . . . 12  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( 2  x.  p )  e.  CC )
439recnd 7999 . . . . . . . . . . . . 13  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  x  e.  CC )
4442, 43subcld 8281 . . . . . . . . . . . 12  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
2  x.  p )  -  x )  e.  CC )
45 sinsub 11761 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  p
)  e.  CC  /\  ( ( 2  x.  p )  -  x
)  e.  CC )  ->  ( sin `  (
( 2  x.  p
)  -  ( ( 2  x.  p )  -  x ) ) )  =  ( ( ( sin `  (
2  x.  p ) )  x.  ( cos `  ( ( 2  x.  p )  -  x
) ) )  -  ( ( cos `  (
2  x.  p ) )  x.  ( sin `  ( ( 2  x.  p )  -  x
) ) ) ) )
4642, 44, 45syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( sin `  ( ( 2  x.  p )  -  (
( 2  x.  p
)  -  x ) ) )  =  ( ( ( sin `  (
2  x.  p ) )  x.  ( cos `  ( ( 2  x.  p )  -  x
) ) )  -  ( ( cos `  (
2  x.  p ) )  x.  ( sin `  ( ( 2  x.  p )  -  x
) ) ) ) )
4742, 43nncand 8286 . . . . . . . . . . . 12  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
2  x.  p )  -  ( ( 2  x.  p )  -  x ) )  =  x )
4847fveq2d 5531 . . . . . . . . . . 11  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( sin `  ( ( 2  x.  p )  -  (
( 2  x.  p
)  -  x ) ) )  =  ( sin `  x ) )
49 cos2t 11771 . . . . . . . . . . . . . . . 16  |-  ( p  e.  CC  ->  ( cos `  ( 2  x.  p ) )  =  ( ( 2  x.  ( ( cos `  p
) ^ 2 ) )  -  1 ) )
5019, 49syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( cos `  ( 2  x.  p
) )  =  ( ( 2  x.  (
( cos `  p
) ^ 2 ) )  -  1 ) )
51 simplr 528 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( cos `  p )  =  0 )
5251sq0id 10626 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( ( cos `  p ) ^
2 )  =  0 )
5352oveq2d 5904 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( 2  x.  ( ( cos `  p ) ^ 2 ) )  =  ( 2  x.  0 ) )
54 2t0e0 9091 . . . . . . . . . . . . . . . . . 18  |-  ( 2  x.  0 )  =  0
5553, 54eqtrdi 2236 . . . . . . . . . . . . . . . . 17  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( 2  x.  ( ( cos `  p ) ^ 2 ) )  =  0 )
5655oveq1d 5903 . . . . . . . . . . . . . . . 16  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
2  x.  ( ( cos `  p ) ^ 2 ) )  -  1 )  =  ( 0  -  1 ) )
57 df-neg 8144 . . . . . . . . . . . . . . . 16  |-  -u 1  =  ( 0  -  1 )
5856, 57eqtr4di 2238 . . . . . . . . . . . . . . 15  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
2  x.  ( ( cos `  p ) ^ 2 ) )  -  1 )  = 
-u 1 )
5950, 58eqtrd 2220 . . . . . . . . . . . . . 14  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( cos `  ( 2  x.  p
) )  =  -u
1 )
6059oveq1d 5903 . . . . . . . . . . . . 13  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( ( cos `  ( 2  x.  p ) )  x.  ( sin `  (
( 2  x.  p
)  -  x ) ) )  =  (
-u 1  x.  ( sin `  ( ( 2  x.  p )  -  x ) ) ) )
6144sincld 11731 . . . . . . . . . . . . . 14  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( sin `  ( ( 2  x.  p )  -  x
) )  e.  CC )
6261mulm1d 8380 . . . . . . . . . . . . 13  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( -u 1  x.  ( sin `  (
( 2  x.  p
)  -  x ) ) )  =  -u ( sin `  ( ( 2  x.  p )  -  x ) ) )
6360, 62eqtrd 2220 . . . . . . . . . . . 12  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( ( cos `  ( 2  x.  p ) )  x.  ( sin `  (
( 2  x.  p
)  -  x ) ) )  =  -u ( sin `  ( ( 2  x.  p )  -  x ) ) )
6463oveq2d 5904 . . . . . . . . . . 11  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
( sin `  (
2  x.  p ) )  x.  ( cos `  ( ( 2  x.  p )  -  x
) ) )  -  ( ( cos `  (
2  x.  p ) )  x.  ( sin `  ( ( 2  x.  p )  -  x
) ) ) )  =  ( ( ( sin `  ( 2  x.  p ) )  x.  ( cos `  (
( 2  x.  p
)  -  x ) ) )  -  -u ( sin `  ( ( 2  x.  p )  -  x ) ) ) )
6546, 48, 643eqtr3d 2228 . . . . . . . . . 10  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( sin `  x )  =  ( ( ( sin `  (
2  x.  p ) )  x.  ( cos `  ( ( 2  x.  p )  -  x
) ) )  -  -u ( sin `  (
( 2  x.  p
)  -  x ) ) ) )
6642sincld 11731 . . . . . . . . . . . 12  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( sin `  ( 2  x.  p
) )  e.  CC )
6744coscld 11732 . . . . . . . . . . . 12  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( cos `  ( ( 2  x.  p )  -  x
) )  e.  CC )
6866, 67mulcld 7991 . . . . . . . . . . 11  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( ( sin `  ( 2  x.  p ) )  x.  ( cos `  (
( 2  x.  p
)  -  x ) ) )  e.  CC )
6968, 61subnegd 8288 . . . . . . . . . 10  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
( sin `  (
2  x.  p ) )  x.  ( cos `  ( ( 2  x.  p )  -  x
) ) )  -  -u ( sin `  (
( 2  x.  p
)  -  x ) ) )  =  ( ( ( sin `  (
2  x.  p ) )  x.  ( cos `  ( ( 2  x.  p )  -  x
) ) )  +  ( sin `  (
( 2  x.  p
)  -  x ) ) ) )
7065, 69eqtrd 2220 . . . . . . . . 9  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( sin `  x )  =  ( ( ( sin `  (
2  x.  p ) )  x.  ( cos `  ( ( 2  x.  p )  -  x
) ) )  +  ( sin `  (
( 2  x.  p
)  -  x ) ) ) )
71 sin2t 11770 . . . . . . . . . . . . . 14  |-  ( p  e.  CC  ->  ( sin `  ( 2  x.  p ) )  =  ( 2  x.  (
( sin `  p
)  x.  ( cos `  p ) ) ) )
7219, 71syl 14 . . . . . . . . . . . . 13  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( sin `  ( 2  x.  p
) )  =  ( 2  x.  ( ( sin `  p )  x.  ( cos `  p
) ) ) )
7351oveq2d 5904 . . . . . . . . . . . . . . . 16  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( ( sin `  p )  x.  ( cos `  p
) )  =  ( ( sin `  p
)  x.  0 ) )
7419sincld 11731 . . . . . . . . . . . . . . . . 17  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( sin `  p )  e.  CC )
7574mul01d 8363 . . . . . . . . . . . . . . . 16  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( ( sin `  p )  x.  0 )  =  0 )
7673, 75eqtrd 2220 . . . . . . . . . . . . . . 15  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( ( sin `  p )  x.  ( cos `  p
) )  =  0 )
7776oveq2d 5904 . . . . . . . . . . . . . 14  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( 2  x.  ( ( sin `  p )  x.  ( cos `  p ) ) )  =  ( 2  x.  0 ) )
7877, 54eqtrdi 2236 . . . . . . . . . . . . 13  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( 2  x.  ( ( sin `  p )  x.  ( cos `  p ) ) )  =  0 )
7972, 78eqtrd 2220 . . . . . . . . . . . 12  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( sin `  ( 2  x.  p
) )  =  0 )
8079oveq1d 5903 . . . . . . . . . . 11  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( ( sin `  ( 2  x.  p ) )  x.  ( cos `  (
( 2  x.  p
)  -  x ) ) )  =  ( 0  x.  ( cos `  ( ( 2  x.  p )  -  x
) ) ) )
8167mul02d 8362 . . . . . . . . . . 11  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( 0  x.  ( cos `  (
( 2  x.  p
)  -  x ) ) )  =  0 )
8280, 81eqtrd 2220 . . . . . . . . . 10  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( ( sin `  ( 2  x.  p ) )  x.  ( cos `  (
( 2  x.  p
)  -  x ) ) )  =  0 )
8382oveq1d 5903 . . . . . . . . 9  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( (
( sin `  (
2  x.  p ) )  x.  ( cos `  ( ( 2  x.  p )  -  x
) ) )  +  ( sin `  (
( 2  x.  p
)  -  x ) ) )  =  ( 0  +  ( sin `  ( ( 2  x.  p )  -  x
) ) ) )
8470, 83eqtrd 2220 . . . . . . . 8  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( sin `  x )  =  ( 0  +  ( sin `  ( ( 2  x.  p )  -  x
) ) ) )
8561addid2d 8120 . . . . . . . 8  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( 0  +  ( sin `  (
( 2  x.  p
)  -  x ) ) )  =  ( sin `  ( ( 2  x.  p )  -  x ) ) )
8684, 85eqtrd 2220 . . . . . . 7  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  ( sin `  x )  =  ( sin `  ( ( 2  x.  p )  -  x ) ) )
8741, 86breqtrrd 4043 . . . . . 6  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p
)  =  0 )  /\  x  e.  ( p (,) ( 2  x.  p ) ) )  ->  0  <  ( sin `  x ) )
8887ralrimiva 2560 . . . . 5  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p )  =  0 )  ->  A. x  e.  (
p (,) ( 2  x.  p ) ) 0  <  ( sin `  x ) )
892, 88jca 306 . . . 4  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( cos `  p )  =  0 )  -> 
( ( cos `  p
)  =  0  /\ 
A. x  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  x ) ) )
9089ex 115 . . 3  |-  ( p  e.  ( 1 (,) 2 )  ->  (
( cos `  p
)  =  0  -> 
( ( cos `  p
)  =  0  /\ 
A. x  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  x ) ) ) )
9190reximia 2582 . 2  |-  ( E. p  e.  ( 1 (,) 2 ) ( cos `  p )  =  0  ->  E. p  e.  ( 1 (,) 2
) ( ( cos `  p )  =  0  /\  A. x  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  x ) ) )
921, 91ax-mp 5 1  |-  E. p  e.  ( 1 (,) 2
) ( ( cos `  p )  =  0  /\  A. x  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  x ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 979    = wceq 1363    e. wcel 2158   A.wral 2465   E.wrex 2466   class class class wbr 4015   ` cfv 5228  (class class class)co 5888   CCcc 7822   RRcr 7823   0cc0 7824   1c1 7825    + caddc 7827    x. cmul 7829   RR*cxr 8004    < clt 8005    <_ cle 8006    - cmin 8141   -ucneg 8142   2c2 8983   (,)cioo 9901   (,]cioc 9902   ^cexp 10532   sincsin 11665   cosccos 11666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942  ax-arch 7943  ax-caucvg 7944  ax-pre-suploc 7945  ax-addf 7946  ax-mulf 7947
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-disj 3993  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-of 6096  df-1st 6154  df-2nd 6155  df-recs 6319  df-irdg 6384  df-frec 6405  df-1o 6430  df-oadd 6434  df-er 6548  df-map 6663  df-pm 6664  df-en 6754  df-dom 6755  df-fin 6756  df-sup 6996  df-inf 6997  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-2 8991  df-3 8992  df-4 8993  df-5 8994  df-6 8995  df-7 8996  df-8 8997  df-9 8998  df-n0 9190  df-z 9267  df-uz 9542  df-q 9633  df-rp 9667  df-xneg 9785  df-xadd 9786  df-ioo 9905  df-ioc 9906  df-ico 9907  df-icc 9908  df-fz 10022  df-fzo 10156  df-seqfrec 10459  df-exp 10533  df-fac 10719  df-bc 10741  df-ihash 10769  df-shft 10837  df-cj 10864  df-re 10865  df-im 10866  df-rsqrt 11020  df-abs 11021  df-clim 11300  df-sumdc 11375  df-ef 11669  df-sin 11671  df-cos 11672  df-rest 12707  df-topgen 12726  df-psmet 13704  df-xmet 13705  df-met 13706  df-bl 13707  df-mopn 13708  df-top 13769  df-topon 13782  df-bases 13814  df-ntr 13867  df-cn 13959  df-cnp 13960  df-tx 14024  df-cncf 14329  df-limced 14396  df-dvap 14397
This theorem is referenced by:  sin0pilem2  14474
  Copyright terms: Public domain W3C validator