ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem5 Unicode version

Theorem 4sqlem5 12576
Description: Lemma for 4sq 12604. (Contributed by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2  |-  ( ph  ->  A  e.  ZZ )
4sqlem5.3  |-  ( ph  ->  M  e.  NN )
4sqlem5.4  |-  B  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
Assertion
Ref Expression
4sqlem5  |-  ( ph  ->  ( B  e.  ZZ  /\  ( ( A  -  B )  /  M
)  e.  ZZ ) )

Proof of Theorem 4sqlem5
StepHypRef Expression
1 4sqlem5.2 . . . . 5  |-  ( ph  ->  A  e.  ZZ )
21zcnd 9466 . . . 4  |-  ( ph  ->  A  e.  CC )
3 4sqlem5.4 . . . . 5  |-  B  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4 zq 9717 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  A  e.  QQ )
51, 4syl 14 . . . . . . . . 9  |-  ( ph  ->  A  e.  QQ )
6 4sqlem5.3 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  NN )
76nnzd 9464 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ZZ )
8 2nn 9169 . . . . . . . . . 10  |-  2  e.  NN
9 znq 9715 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  2  e.  NN )  ->  ( M  /  2
)  e.  QQ )
107, 8, 9sylancl 413 . . . . . . . . 9  |-  ( ph  ->  ( M  /  2
)  e.  QQ )
11 qaddcl 9726 . . . . . . . . 9  |-  ( ( A  e.  QQ  /\  ( M  /  2
)  e.  QQ )  ->  ( A  +  ( M  /  2
) )  e.  QQ )
125, 10, 11syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( A  +  ( M  /  2 ) )  e.  QQ )
13 nnq 9724 . . . . . . . . 9  |-  ( M  e.  NN  ->  M  e.  QQ )
146, 13syl 14 . . . . . . . 8  |-  ( ph  ->  M  e.  QQ )
156nngt0d 9051 . . . . . . . 8  |-  ( ph  ->  0  <  M )
1612, 14, 15modqcld 10437 . . . . . . 7  |-  ( ph  ->  ( ( A  +  ( M  /  2
) )  mod  M
)  e.  QQ )
17 qcn 9725 . . . . . . 7  |-  ( ( ( A  +  ( M  /  2 ) )  mod  M )  e.  QQ  ->  (
( A  +  ( M  /  2 ) )  mod  M )  e.  CC )
1816, 17syl 14 . . . . . 6  |-  ( ph  ->  ( ( A  +  ( M  /  2
) )  mod  M
)  e.  CC )
196nnred 9020 . . . . . . . 8  |-  ( ph  ->  M  e.  RR )
2019rehalfcld 9255 . . . . . . 7  |-  ( ph  ->  ( M  /  2
)  e.  RR )
2120recnd 8072 . . . . . 6  |-  ( ph  ->  ( M  /  2
)  e.  CC )
2218, 21subcld 8354 . . . . 5  |-  ( ph  ->  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )  e.  CC )
233, 22eqeltrid 2283 . . . 4  |-  ( ph  ->  B  e.  CC )
242, 23nncand 8359 . . 3  |-  ( ph  ->  ( A  -  ( A  -  B )
)  =  B )
252, 23subcld 8354 . . . . . 6  |-  ( ph  ->  ( A  -  B
)  e.  CC )
2619recnd 8072 . . . . . 6  |-  ( ph  ->  M  e.  CC )
276nnap0d 9053 . . . . . 6  |-  ( ph  ->  M #  0 )
2825, 26, 27divcanap1d 8835 . . . . 5  |-  ( ph  ->  ( ( ( A  -  B )  /  M )  x.  M
)  =  ( A  -  B ) )
293oveq2i 5936 . . . . . . . . 9  |-  ( A  -  B )  =  ( A  -  (
( ( A  +  ( M  /  2
) )  mod  M
)  -  ( M  /  2 ) ) )
302, 18, 21subsub3d 8384 . . . . . . . . 9  |-  ( ph  ->  ( A  -  (
( ( A  +  ( M  /  2
) )  mod  M
)  -  ( M  /  2 ) ) )  =  ( ( A  +  ( M  /  2 ) )  -  ( ( A  +  ( M  / 
2 ) )  mod 
M ) ) )
3129, 30eqtrid 2241 . . . . . . . 8  |-  ( ph  ->  ( A  -  B
)  =  ( ( A  +  ( M  /  2 ) )  -  ( ( A  +  ( M  / 
2 ) )  mod 
M ) ) )
3231oveq1d 5940 . . . . . . 7  |-  ( ph  ->  ( ( A  -  B )  /  M
)  =  ( ( ( A  +  ( M  /  2 ) )  -  ( ( A  +  ( M  /  2 ) )  mod  M ) )  /  M ) )
33 modqdifz 10445 . . . . . . . 8  |-  ( ( ( A  +  ( M  /  2 ) )  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  (
( ( A  +  ( M  /  2
) )  -  (
( A  +  ( M  /  2 ) )  mod  M ) )  /  M )  e.  ZZ )
3412, 14, 15, 33syl3anc 1249 . . . . . . 7  |-  ( ph  ->  ( ( ( A  +  ( M  / 
2 ) )  -  ( ( A  +  ( M  /  2
) )  mod  M
) )  /  M
)  e.  ZZ )
3532, 34eqeltrd 2273 . . . . . 6  |-  ( ph  ->  ( ( A  -  B )  /  M
)  e.  ZZ )
3635, 7zmulcld 9471 . . . . 5  |-  ( ph  ->  ( ( ( A  -  B )  /  M )  x.  M
)  e.  ZZ )
3728, 36eqeltrrd 2274 . . . 4  |-  ( ph  ->  ( A  -  B
)  e.  ZZ )
381, 37zsubcld 9470 . . 3  |-  ( ph  ->  ( A  -  ( A  -  B )
)  e.  ZZ )
3924, 38eqeltrrd 2274 . 2  |-  ( ph  ->  B  e.  ZZ )
4039, 35jca 306 1  |-  ( ph  ->  ( B  e.  ZZ  /\  ( ( A  -  B )  /  M
)  e.  ZZ ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   class class class wbr 4034  (class class class)co 5925   CCcc 7894   0cc0 7896    + caddc 7899    x. cmul 7901    < clt 8078    - cmin 8214    / cdiv 8716   NNcn 9007   2c2 9058   ZZcz 9343   QQcq 9710    mod cmo 10431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-q 9711  df-rp 9746  df-fl 10377  df-mod 10432
This theorem is referenced by:  4sqlem7  12578  4sqlem8  12579  4sqlem9  12580  4sqlem10  12581  4sqlem14  12598  4sqlem15  12599  4sqlem16  12600  4sqlem17  12601  2sqlem8a  15447  2sqlem8  15448
  Copyright terms: Public domain W3C validator