ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem5 Unicode version

Theorem 4sqlem5 12905
Description: Lemma for 4sq 12933. (Contributed by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2  |-  ( ph  ->  A  e.  ZZ )
4sqlem5.3  |-  ( ph  ->  M  e.  NN )
4sqlem5.4  |-  B  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
Assertion
Ref Expression
4sqlem5  |-  ( ph  ->  ( B  e.  ZZ  /\  ( ( A  -  B )  /  M
)  e.  ZZ ) )

Proof of Theorem 4sqlem5
StepHypRef Expression
1 4sqlem5.2 . . . . 5  |-  ( ph  ->  A  e.  ZZ )
21zcnd 9570 . . . 4  |-  ( ph  ->  A  e.  CC )
3 4sqlem5.4 . . . . 5  |-  B  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4 zq 9821 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  A  e.  QQ )
51, 4syl 14 . . . . . . . . 9  |-  ( ph  ->  A  e.  QQ )
6 4sqlem5.3 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  NN )
76nnzd 9568 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ZZ )
8 2nn 9272 . . . . . . . . . 10  |-  2  e.  NN
9 znq 9819 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  2  e.  NN )  ->  ( M  /  2
)  e.  QQ )
107, 8, 9sylancl 413 . . . . . . . . 9  |-  ( ph  ->  ( M  /  2
)  e.  QQ )
11 qaddcl 9830 . . . . . . . . 9  |-  ( ( A  e.  QQ  /\  ( M  /  2
)  e.  QQ )  ->  ( A  +  ( M  /  2
) )  e.  QQ )
125, 10, 11syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( A  +  ( M  /  2 ) )  e.  QQ )
13 nnq 9828 . . . . . . . . 9  |-  ( M  e.  NN  ->  M  e.  QQ )
146, 13syl 14 . . . . . . . 8  |-  ( ph  ->  M  e.  QQ )
156nngt0d 9154 . . . . . . . 8  |-  ( ph  ->  0  <  M )
1612, 14, 15modqcld 10550 . . . . . . 7  |-  ( ph  ->  ( ( A  +  ( M  /  2
) )  mod  M
)  e.  QQ )
17 qcn 9829 . . . . . . 7  |-  ( ( ( A  +  ( M  /  2 ) )  mod  M )  e.  QQ  ->  (
( A  +  ( M  /  2 ) )  mod  M )  e.  CC )
1816, 17syl 14 . . . . . 6  |-  ( ph  ->  ( ( A  +  ( M  /  2
) )  mod  M
)  e.  CC )
196nnred 9123 . . . . . . . 8  |-  ( ph  ->  M  e.  RR )
2019rehalfcld 9358 . . . . . . 7  |-  ( ph  ->  ( M  /  2
)  e.  RR )
2120recnd 8175 . . . . . 6  |-  ( ph  ->  ( M  /  2
)  e.  CC )
2218, 21subcld 8457 . . . . 5  |-  ( ph  ->  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )  e.  CC )
233, 22eqeltrid 2316 . . . 4  |-  ( ph  ->  B  e.  CC )
242, 23nncand 8462 . . 3  |-  ( ph  ->  ( A  -  ( A  -  B )
)  =  B )
252, 23subcld 8457 . . . . . 6  |-  ( ph  ->  ( A  -  B
)  e.  CC )
2619recnd 8175 . . . . . 6  |-  ( ph  ->  M  e.  CC )
276nnap0d 9156 . . . . . 6  |-  ( ph  ->  M #  0 )
2825, 26, 27divcanap1d 8938 . . . . 5  |-  ( ph  ->  ( ( ( A  -  B )  /  M )  x.  M
)  =  ( A  -  B ) )
293oveq2i 6012 . . . . . . . . 9  |-  ( A  -  B )  =  ( A  -  (
( ( A  +  ( M  /  2
) )  mod  M
)  -  ( M  /  2 ) ) )
302, 18, 21subsub3d 8487 . . . . . . . . 9  |-  ( ph  ->  ( A  -  (
( ( A  +  ( M  /  2
) )  mod  M
)  -  ( M  /  2 ) ) )  =  ( ( A  +  ( M  /  2 ) )  -  ( ( A  +  ( M  / 
2 ) )  mod 
M ) ) )
3129, 30eqtrid 2274 . . . . . . . 8  |-  ( ph  ->  ( A  -  B
)  =  ( ( A  +  ( M  /  2 ) )  -  ( ( A  +  ( M  / 
2 ) )  mod 
M ) ) )
3231oveq1d 6016 . . . . . . 7  |-  ( ph  ->  ( ( A  -  B )  /  M
)  =  ( ( ( A  +  ( M  /  2 ) )  -  ( ( A  +  ( M  /  2 ) )  mod  M ) )  /  M ) )
33 modqdifz 10558 . . . . . . . 8  |-  ( ( ( A  +  ( M  /  2 ) )  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  (
( ( A  +  ( M  /  2
) )  -  (
( A  +  ( M  /  2 ) )  mod  M ) )  /  M )  e.  ZZ )
3412, 14, 15, 33syl3anc 1271 . . . . . . 7  |-  ( ph  ->  ( ( ( A  +  ( M  / 
2 ) )  -  ( ( A  +  ( M  /  2
) )  mod  M
) )  /  M
)  e.  ZZ )
3532, 34eqeltrd 2306 . . . . . 6  |-  ( ph  ->  ( ( A  -  B )  /  M
)  e.  ZZ )
3635, 7zmulcld 9575 . . . . 5  |-  ( ph  ->  ( ( ( A  -  B )  /  M )  x.  M
)  e.  ZZ )
3728, 36eqeltrrd 2307 . . . 4  |-  ( ph  ->  ( A  -  B
)  e.  ZZ )
381, 37zsubcld 9574 . . 3  |-  ( ph  ->  ( A  -  ( A  -  B )
)  e.  ZZ )
3924, 38eqeltrrd 2307 . 2  |-  ( ph  ->  B  e.  ZZ )
4039, 35jca 306 1  |-  ( ph  ->  ( B  e.  ZZ  /\  ( ( A  -  B )  /  M
)  e.  ZZ ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   class class class wbr 4083  (class class class)co 6001   CCcc 7997   0cc0 7999    + caddc 8002    x. cmul 8004    < clt 8181    - cmin 8317    / cdiv 8819   NNcn 9110   2c2 9161   ZZcz 9446   QQcq 9814    mod cmo 10544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-n0 9370  df-z 9447  df-q 9815  df-rp 9850  df-fl 10490  df-mod 10545
This theorem is referenced by:  4sqlem7  12907  4sqlem8  12908  4sqlem9  12909  4sqlem10  12910  4sqlem14  12927  4sqlem15  12928  4sqlem16  12929  4sqlem17  12930  2sqlem8a  15801  2sqlem8  15802
  Copyright terms: Public domain W3C validator