ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem5 Unicode version

Theorem 4sqlem5 12308
Description: Lemma for 4sq (not yet proved here). (Contributed by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2  |-  ( ph  ->  A  e.  ZZ )
4sqlem5.3  |-  ( ph  ->  M  e.  NN )
4sqlem5.4  |-  B  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
Assertion
Ref Expression
4sqlem5  |-  ( ph  ->  ( B  e.  ZZ  /\  ( ( A  -  B )  /  M
)  e.  ZZ ) )

Proof of Theorem 4sqlem5
StepHypRef Expression
1 4sqlem5.2 . . . . 5  |-  ( ph  ->  A  e.  ZZ )
21zcnd 9310 . . . 4  |-  ( ph  ->  A  e.  CC )
3 4sqlem5.4 . . . . 5  |-  B  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4 zq 9560 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  A  e.  QQ )
51, 4syl 14 . . . . . . . . 9  |-  ( ph  ->  A  e.  QQ )
6 4sqlem5.3 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  NN )
76nnzd 9308 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ZZ )
8 2nn 9014 . . . . . . . . . 10  |-  2  e.  NN
9 znq 9558 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  2  e.  NN )  ->  ( M  /  2
)  e.  QQ )
107, 8, 9sylancl 410 . . . . . . . . 9  |-  ( ph  ->  ( M  /  2
)  e.  QQ )
11 qaddcl 9569 . . . . . . . . 9  |-  ( ( A  e.  QQ  /\  ( M  /  2
)  e.  QQ )  ->  ( A  +  ( M  /  2
) )  e.  QQ )
125, 10, 11syl2anc 409 . . . . . . . 8  |-  ( ph  ->  ( A  +  ( M  /  2 ) )  e.  QQ )
13 nnq 9567 . . . . . . . . 9  |-  ( M  e.  NN  ->  M  e.  QQ )
146, 13syl 14 . . . . . . . 8  |-  ( ph  ->  M  e.  QQ )
156nngt0d 8897 . . . . . . . 8  |-  ( ph  ->  0  <  M )
1612, 14, 15modqcld 10259 . . . . . . 7  |-  ( ph  ->  ( ( A  +  ( M  /  2
) )  mod  M
)  e.  QQ )
17 qcn 9568 . . . . . . 7  |-  ( ( ( A  +  ( M  /  2 ) )  mod  M )  e.  QQ  ->  (
( A  +  ( M  /  2 ) )  mod  M )  e.  CC )
1816, 17syl 14 . . . . . 6  |-  ( ph  ->  ( ( A  +  ( M  /  2
) )  mod  M
)  e.  CC )
196nnred 8866 . . . . . . . 8  |-  ( ph  ->  M  e.  RR )
2019rehalfcld 9099 . . . . . . 7  |-  ( ph  ->  ( M  /  2
)  e.  RR )
2120recnd 7923 . . . . . 6  |-  ( ph  ->  ( M  /  2
)  e.  CC )
2218, 21subcld 8205 . . . . 5  |-  ( ph  ->  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )  e.  CC )
233, 22eqeltrid 2252 . . . 4  |-  ( ph  ->  B  e.  CC )
242, 23nncand 8210 . . 3  |-  ( ph  ->  ( A  -  ( A  -  B )
)  =  B )
252, 23subcld 8205 . . . . . 6  |-  ( ph  ->  ( A  -  B
)  e.  CC )
2619recnd 7923 . . . . . 6  |-  ( ph  ->  M  e.  CC )
276nnap0d 8899 . . . . . 6  |-  ( ph  ->  M #  0 )
2825, 26, 27divcanap1d 8683 . . . . 5  |-  ( ph  ->  ( ( ( A  -  B )  /  M )  x.  M
)  =  ( A  -  B ) )
293oveq2i 5852 . . . . . . . . 9  |-  ( A  -  B )  =  ( A  -  (
( ( A  +  ( M  /  2
) )  mod  M
)  -  ( M  /  2 ) ) )
302, 18, 21subsub3d 8235 . . . . . . . . 9  |-  ( ph  ->  ( A  -  (
( ( A  +  ( M  /  2
) )  mod  M
)  -  ( M  /  2 ) ) )  =  ( ( A  +  ( M  /  2 ) )  -  ( ( A  +  ( M  / 
2 ) )  mod 
M ) ) )
3129, 30syl5eq 2210 . . . . . . . 8  |-  ( ph  ->  ( A  -  B
)  =  ( ( A  +  ( M  /  2 ) )  -  ( ( A  +  ( M  / 
2 ) )  mod 
M ) ) )
3231oveq1d 5856 . . . . . . 7  |-  ( ph  ->  ( ( A  -  B )  /  M
)  =  ( ( ( A  +  ( M  /  2 ) )  -  ( ( A  +  ( M  /  2 ) )  mod  M ) )  /  M ) )
33 modqdifz 10267 . . . . . . . 8  |-  ( ( ( A  +  ( M  /  2 ) )  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  (
( ( A  +  ( M  /  2
) )  -  (
( A  +  ( M  /  2 ) )  mod  M ) )  /  M )  e.  ZZ )
3412, 14, 15, 33syl3anc 1228 . . . . . . 7  |-  ( ph  ->  ( ( ( A  +  ( M  / 
2 ) )  -  ( ( A  +  ( M  /  2
) )  mod  M
) )  /  M
)  e.  ZZ )
3532, 34eqeltrd 2242 . . . . . 6  |-  ( ph  ->  ( ( A  -  B )  /  M
)  e.  ZZ )
3635, 7zmulcld 9315 . . . . 5  |-  ( ph  ->  ( ( ( A  -  B )  /  M )  x.  M
)  e.  ZZ )
3728, 36eqeltrrd 2243 . . . 4  |-  ( ph  ->  ( A  -  B
)  e.  ZZ )
381, 37zsubcld 9314 . . 3  |-  ( ph  ->  ( A  -  ( A  -  B )
)  e.  ZZ )
3924, 38eqeltrrd 2243 . 2  |-  ( ph  ->  B  e.  ZZ )
4039, 35jca 304 1  |-  ( ph  ->  ( B  e.  ZZ  /\  ( ( A  -  B )  /  M
)  e.  ZZ ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   class class class wbr 3981  (class class class)co 5841   CCcc 7747   0cc0 7749    + caddc 7752    x. cmul 7754    < clt 7929    - cmin 8065    / cdiv 8564   NNcn 8853   2c2 8904   ZZcz 9187   QQcq 9553    mod cmo 10253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867  ax-arch 7868
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-id 4270  df-po 4273  df-iso 4274  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-2 8912  df-n0 9111  df-z 9188  df-q 9554  df-rp 9586  df-fl 10201  df-mod 10254
This theorem is referenced by:  4sqlem7  12310  4sqlem8  12311  4sqlem9  12312  4sqlem10  12313  2sqlem8a  13558  2sqlem8  13559
  Copyright terms: Public domain W3C validator