ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negsubd Unicode version

Theorem negsubd 8389
Description: Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1  |-  ( ph  ->  A  e.  CC )
pncand.2  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
negsubd  |-  ( ph  ->  ( A  +  -u B )  =  ( A  -  B ) )

Proof of Theorem negsubd
StepHypRef Expression
1 negidd.1 . 2  |-  ( ph  ->  A  e.  CC )
2 pncand.2 . 2  |-  ( ph  ->  B  e.  CC )
3 negsub 8320 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  -u B )  =  ( A  -  B ) )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  ( A  +  -u B )  =  ( A  -  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176  (class class class)co 5944   CCcc 7923    + caddc 7928    - cmin 8243   -ucneg 8244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-setind 4585  ax-resscn 8017  ax-1cn 8018  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-sub 8245  df-neg 8246
This theorem is referenced by:  mulsub  8473  apsub1  8715  divsubdirap  8781  divsubdivap  8801  div2subap  8910  ofnegsub  9035  zaddcllemneg  9411  icoshftf1o  10113  fzosubel  10323  ceiqm1l  10456  modqcyc2  10505  qnegmod  10514  modqsub12d  10526  modsumfzodifsn  10541  expaddzaplem  10727  binom2sub  10798  seq3shft  11149  cjreb  11177  recj  11178  remullem  11182  imcj  11186  resqrexlemover  11321  resqrexlemcalc1  11325  resqrexlemcalc3  11327  bdtri  11551  subcn2  11622  fsumshftm  11756  fsumsub  11763  geosergap  11817  efmival  12044  cosadd  12048  sinsub  12051  sincossq  12059  cos12dec  12079  moddvds  12110  dvdsadd2b  12151  pythagtriplem4  12591  mulgdirlem  13489  mulgmodid  13497  mulgsubdir  13498  gsumfzconst  13677  dvmptsubcn  15195  cosq34lt1  15322  rpcxpsub  15380  rpabscxpbnd  15412  rprelogbdiv  15429  lgseisenlem1  15547  2sqlem4  15595  apdifflemr  15990
  Copyright terms: Public domain W3C validator