| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negsubd | Unicode version | ||
| Description: Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 |
|
| pncand.2 |
|
| Ref | Expression |
|---|---|
| negsubd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 |
. 2
| |
| 2 | pncand.2 |
. 2
| |
| 3 | negsub 8320 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 ax-resscn 8017 ax-1cn 8018 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-sub 8245 df-neg 8246 |
| This theorem is referenced by: mulsub 8473 apsub1 8715 divsubdirap 8781 divsubdivap 8801 div2subap 8910 ofnegsub 9035 zaddcllemneg 9411 icoshftf1o 10113 fzosubel 10323 ceiqm1l 10456 modqcyc2 10505 qnegmod 10514 modqsub12d 10526 modsumfzodifsn 10541 expaddzaplem 10727 binom2sub 10798 seq3shft 11149 cjreb 11177 recj 11178 remullem 11182 imcj 11186 resqrexlemover 11321 resqrexlemcalc1 11325 resqrexlemcalc3 11327 bdtri 11551 subcn2 11622 fsumshftm 11756 fsumsub 11763 geosergap 11817 efmival 12044 cosadd 12048 sinsub 12051 sincossq 12059 cos12dec 12079 moddvds 12110 dvdsadd2b 12151 pythagtriplem4 12591 mulgdirlem 13489 mulgmodid 13497 mulgsubdir 13498 gsumfzconst 13677 dvmptsubcn 15195 cosq34lt1 15322 rpcxpsub 15380 rpabscxpbnd 15412 rprelogbdiv 15429 lgseisenlem1 15547 2sqlem4 15595 apdifflemr 15990 |
| Copyright terms: Public domain | W3C validator |