ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negsubd Unicode version

Theorem negsubd 8336
Description: Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1  |-  ( ph  ->  A  e.  CC )
pncand.2  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
negsubd  |-  ( ph  ->  ( A  +  -u B )  =  ( A  -  B ) )

Proof of Theorem negsubd
StepHypRef Expression
1 negidd.1 . 2  |-  ( ph  ->  A  e.  CC )
2 pncand.2 . 2  |-  ( ph  ->  B  e.  CC )
3 negsub 8267 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  -u B )  =  ( A  -  B ) )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  ( A  +  -u B )  =  ( A  -  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164  (class class class)co 5918   CCcc 7870    + caddc 7875    - cmin 8190   -ucneg 8191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-setind 4569  ax-resscn 7964  ax-1cn 7965  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-sub 8192  df-neg 8193
This theorem is referenced by:  mulsub  8420  apsub1  8661  divsubdirap  8727  divsubdivap  8747  div2subap  8856  ofnegsub  8981  zaddcllemneg  9356  icoshftf1o  10057  fzosubel  10261  ceiqm1l  10382  modqcyc2  10431  qnegmod  10440  modqsub12d  10452  modsumfzodifsn  10467  expaddzaplem  10653  binom2sub  10724  seq3shft  10982  cjreb  11010  recj  11011  remullem  11015  imcj  11019  resqrexlemover  11154  resqrexlemcalc1  11158  resqrexlemcalc3  11160  bdtri  11383  subcn2  11454  fsumshftm  11588  fsumsub  11595  geosergap  11649  efmival  11876  cosadd  11880  sinsub  11883  sincossq  11891  cos12dec  11911  moddvds  11942  dvdsadd2b  11983  pythagtriplem4  12406  mulgdirlem  13223  mulgmodid  13231  mulgsubdir  13232  gsumfzconst  13411  dvmptsubcn  14870  cosq34lt1  14985  rpcxpsub  15043  rpabscxpbnd  15073  rprelogbdiv  15089  lgseisenlem1  15186  2sqlem4  15205  apdifflemr  15537
  Copyright terms: Public domain W3C validator