| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negsubd | Unicode version | ||
| Description: Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 |
|
| pncand.2 |
|
| Ref | Expression |
|---|---|
| negsubd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 |
. 2
| |
| 2 | pncand.2 |
. 2
| |
| 3 | negsub 8394 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-resscn 8091 ax-1cn 8092 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-sub 8319 df-neg 8320 |
| This theorem is referenced by: mulsub 8547 apsub1 8789 divsubdirap 8855 divsubdivap 8875 div2subap 8984 ofnegsub 9109 zaddcllemneg 9485 icoshftf1o 10187 fzosubel 10400 ceiqm1l 10533 modqcyc2 10582 qnegmod 10591 modqsub12d 10603 modsumfzodifsn 10618 expaddzaplem 10804 binom2sub 10875 seq3shft 11349 cjreb 11377 recj 11378 remullem 11382 imcj 11386 resqrexlemover 11521 resqrexlemcalc1 11525 resqrexlemcalc3 11527 bdtri 11751 subcn2 11822 fsumshftm 11956 fsumsub 11963 geosergap 12017 efmival 12244 cosadd 12248 sinsub 12251 sincossq 12259 cos12dec 12279 moddvds 12310 dvdsadd2b 12351 pythagtriplem4 12791 mulgdirlem 13690 mulgmodid 13698 mulgsubdir 13699 gsumfzconst 13878 dvmptsubcn 15397 cosq34lt1 15524 rpcxpsub 15582 rpabscxpbnd 15614 rprelogbdiv 15631 lgseisenlem1 15749 2sqlem4 15797 apdifflemr 16415 |
| Copyright terms: Public domain | W3C validator |