ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negsubd Unicode version

Theorem negsubd 8211
Description: Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1  |-  ( ph  ->  A  e.  CC )
pncand.2  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
negsubd  |-  ( ph  ->  ( A  +  -u B )  =  ( A  -  B ) )

Proof of Theorem negsubd
StepHypRef Expression
1 negidd.1 . 2  |-  ( ph  ->  A  e.  CC )
2 pncand.2 . 2  |-  ( ph  ->  B  e.  CC )
3 negsub 8142 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  -u B )  =  ( A  -  B ) )
41, 2, 3syl2anc 409 1  |-  ( ph  ->  ( A  +  -u B )  =  ( A  -  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136  (class class class)co 5841   CCcc 7747    + caddc 7752    - cmin 8065   -ucneg 8066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-setind 4513  ax-resscn 7841  ax-1cn 7842  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-addcom 7849  ax-addass 7851  ax-distr 7853  ax-i2m1 7854  ax-0id 7857  ax-rnegex 7858  ax-cnre 7860
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-ral 2448  df-rex 2449  df-reu 2450  df-rab 2452  df-v 2727  df-sbc 2951  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-br 3982  df-opab 4043  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-iota 5152  df-fun 5189  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-sub 8067  df-neg 8068
This theorem is referenced by:  mulsub  8295  apsub1  8536  divsubdirap  8600  divsubdivap  8620  div2subap  8729  zaddcllemneg  9226  icoshftf1o  9923  fzosubel  10125  ceiqm1l  10242  modqcyc2  10291  qnegmod  10300  modqsub12d  10312  modsumfzodifsn  10327  expaddzaplem  10494  binom2sub  10564  seq3shft  10776  cjreb  10804  recj  10805  remullem  10809  imcj  10813  resqrexlemover  10948  resqrexlemcalc1  10952  resqrexlemcalc3  10954  bdtri  11177  subcn2  11248  fsumshftm  11382  fsumsub  11389  geosergap  11443  efmival  11670  cosadd  11674  sinsub  11677  sincossq  11685  cos12dec  11704  moddvds  11735  dvdsadd2b  11776  pythagtriplem4  12196  dvmptsubcn  13285  cosq34lt1  13371  rpcxpsub  13429  rpabscxpbnd  13459  rprelogbdiv  13475  2sqlem4  13554  apdifflemr  13886
  Copyright terms: Public domain W3C validator