![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > negsubd | Unicode version |
Description: Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
pncand.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
negsubd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pncand.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | negsub 8267 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2anc 411 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-setind 4569 ax-resscn 7964 ax-1cn 7965 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-sub 8192 df-neg 8193 |
This theorem is referenced by: mulsub 8420 apsub1 8661 divsubdirap 8727 divsubdivap 8747 div2subap 8856 ofnegsub 8981 zaddcllemneg 9356 icoshftf1o 10057 fzosubel 10261 ceiqm1l 10382 modqcyc2 10431 qnegmod 10440 modqsub12d 10452 modsumfzodifsn 10467 expaddzaplem 10653 binom2sub 10724 seq3shft 10982 cjreb 11010 recj 11011 remullem 11015 imcj 11019 resqrexlemover 11154 resqrexlemcalc1 11158 resqrexlemcalc3 11160 bdtri 11383 subcn2 11454 fsumshftm 11588 fsumsub 11595 geosergap 11649 efmival 11876 cosadd 11880 sinsub 11883 sincossq 11891 cos12dec 11911 moddvds 11942 dvdsadd2b 11983 pythagtriplem4 12406 mulgdirlem 13223 mulgmodid 13231 mulgsubdir 13232 gsumfzconst 13411 dvmptsubcn 14870 cosq34lt1 14985 rpcxpsub 15043 rpabscxpbnd 15073 rprelogbdiv 15089 lgseisenlem1 15186 2sqlem4 15205 apdifflemr 15537 |
Copyright terms: Public domain | W3C validator |