ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodrev Unicode version

Theorem fprodrev 11645
Description: Reversal of a finite product. (Contributed by Scott Fenton, 5-Jan-2018.)
Hypotheses
Ref Expression
fprodshft.1  |-  ( ph  ->  K  e.  ZZ )
fprodshft.2  |-  ( ph  ->  M  e.  ZZ )
fprodshft.3  |-  ( ph  ->  N  e.  ZZ )
fprodshft.4  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )
fprodrev.5  |-  ( j  =  ( K  -  k )  ->  A  =  B )
Assertion
Ref Expression
fprodrev  |-  ( ph  ->  prod_ j  e.  ( M ... N ) A  =  prod_ k  e.  ( ( K  -  N ) ... ( K  -  M )
) B )
Distinct variable groups:    A, k    B, j    j, k, ph    j, K, k    ph, k    j, M, k    j, N, k
Allowed substitution hints:    A( j)    B( k)

Proof of Theorem fprodrev
StepHypRef Expression
1 fprodrev.5 . 2  |-  ( j  =  ( K  -  k )  ->  A  =  B )
2 fprodshft.1 . . . 4  |-  ( ph  ->  K  e.  ZZ )
3 fprodshft.3 . . . 4  |-  ( ph  ->  N  e.  ZZ )
42, 3zsubcld 9398 . . 3  |-  ( ph  ->  ( K  -  N
)  e.  ZZ )
5 fprodshft.2 . . . 4  |-  ( ph  ->  M  e.  ZZ )
62, 5zsubcld 9398 . . 3  |-  ( ph  ->  ( K  -  M
)  e.  ZZ )
74, 6fzfigd 10449 . 2  |-  ( ph  ->  ( ( K  -  N ) ... ( K  -  M )
)  e.  Fin )
8 eqid 2189 . . 3  |-  ( j  e.  ( ( K  -  N ) ... ( K  -  M
) )  |->  ( K  -  j ) )  =  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  |->  ( K  -  j ) )
92adantr 276 . . . 4  |-  ( (
ph  /\  j  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  K  e.  ZZ )
10 elfzelz 10043 . . . . 5  |-  ( j  e.  ( ( K  -  N ) ... ( K  -  M
) )  ->  j  e.  ZZ )
1110adantl 277 . . . 4  |-  ( (
ph  /\  j  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  j  e.  ZZ )
129, 11zsubcld 9398 . . 3  |-  ( (
ph  /\  j  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  ( K  -  j )  e.  ZZ )
132adantr 276 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  K  e.  ZZ )
14 elfzelz 10043 . . . . 5  |-  ( k  e.  ( M ... N )  ->  k  e.  ZZ )
1514adantl 277 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  k  e.  ZZ )
1613, 15zsubcld 9398 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( K  -  k )  e.  ZZ )
17 simprr 531 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
k  =  ( K  -  j ) )
18 simprl 529 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
j  e.  ( ( K  -  N ) ... ( K  -  M ) ) )
195adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  ->  M  e.  ZZ )
203adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  ->  N  e.  ZZ )
212adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  ->  K  e.  ZZ )
2210ad2antrl 490 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
j  e.  ZZ )
23 fzrev 10102 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( j  e.  ( ( K  -  N
) ... ( K  -  M ) )  <->  ( K  -  j )  e.  ( M ... N
) ) )
2419, 20, 21, 22, 23syl22anc 1250 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
( j  e.  ( ( K  -  N
) ... ( K  -  M ) )  <->  ( K  -  j )  e.  ( M ... N
) ) )
2518, 24mpbid 147 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
( K  -  j
)  e.  ( M ... N ) )
2617, 25eqeltrd 2266 . . . . 5  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
k  e.  ( M ... N ) )
27 oveq2 5899 . . . . . . 7  |-  ( k  =  ( K  -  j )  ->  ( K  -  k )  =  ( K  -  ( K  -  j
) ) )
2827ad2antll 491 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
( K  -  k
)  =  ( K  -  ( K  -  j ) ) )
292zcnd 9394 . . . . . . . 8  |-  ( ph  ->  K  e.  CC )
3029adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  ->  K  e.  CC )
3110zcnd 9394 . . . . . . . 8  |-  ( j  e.  ( ( K  -  N ) ... ( K  -  M
) )  ->  j  e.  CC )
3231ad2antrl 490 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
j  e.  CC )
3330, 32nncand 8291 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
( K  -  ( K  -  j )
)  =  j )
3428, 33eqtr2d 2223 . . . . 5  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
j  =  ( K  -  k ) )
3526, 34jca 306 . . . 4  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
( k  e.  ( M ... N )  /\  j  =  ( K  -  k ) ) )
36 simprr 531 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
j  =  ( K  -  k ) )
37 simprl 529 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
k  e.  ( M ... N ) )
385adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  ->  M  e.  ZZ )
393adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  ->  N  e.  ZZ )
402adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  ->  K  e.  ZZ )
4114ad2antrl 490 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
k  e.  ZZ )
42 fzrev2 10103 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  k  e.  ZZ ) )  -> 
( k  e.  ( M ... N )  <-> 
( K  -  k
)  e.  ( ( K  -  N ) ... ( K  -  M ) ) ) )
4338, 39, 40, 41, 42syl22anc 1250 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
( k  e.  ( M ... N )  <-> 
( K  -  k
)  e.  ( ( K  -  N ) ... ( K  -  M ) ) ) )
4437, 43mpbid 147 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
( K  -  k
)  e.  ( ( K  -  N ) ... ( K  -  M ) ) )
4536, 44eqeltrd 2266 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
j  e.  ( ( K  -  N ) ... ( K  -  M ) ) )
46 oveq2 5899 . . . . . . 7  |-  ( j  =  ( K  -  k )  ->  ( K  -  j )  =  ( K  -  ( K  -  k
) ) )
4746ad2antll 491 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
( K  -  j
)  =  ( K  -  ( K  -  k ) ) )
4829adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  ->  K  e.  CC )
4914zcnd 9394 . . . . . . . 8  |-  ( k  e.  ( M ... N )  ->  k  e.  CC )
5049ad2antrl 490 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
k  e.  CC )
5148, 50nncand 8291 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
( K  -  ( K  -  k )
)  =  k )
5247, 51eqtr2d 2223 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
k  =  ( K  -  j ) )
5345, 52jca 306 . . . 4  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
( j  e.  ( ( K  -  N
) ... ( K  -  M ) )  /\  k  =  ( K  -  j ) ) )
5435, 53impbida 596 . . 3  |-  ( ph  ->  ( ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) )  <->  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) ) )
558, 12, 16, 54f1od 6092 . 2  |-  ( ph  ->  ( j  e.  ( ( K  -  N
) ... ( K  -  M ) )  |->  ( K  -  j ) ) : ( ( K  -  N ) ... ( K  -  M ) ) -1-1-onto-> ( M ... N ) )
56 oveq2 5899 . . 3  |-  ( j  =  k  ->  ( K  -  j )  =  ( K  -  k ) )
57 simpr 110 . . 3  |-  ( (
ph  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )
582adantr 276 . . . 4  |-  ( (
ph  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  K  e.  ZZ )
59 elfzelz 10043 . . . . 5  |-  ( k  e.  ( ( K  -  N ) ... ( K  -  M
) )  ->  k  e.  ZZ )
6059adantl 277 . . . 4  |-  ( (
ph  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  k  e.  ZZ )
6158, 60zsubcld 9398 . . 3  |-  ( (
ph  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  ( K  -  k )  e.  ZZ )
628, 56, 57, 61fvmptd3 5625 . 2  |-  ( (
ph  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  (
( j  e.  ( ( K  -  N
) ... ( K  -  M ) )  |->  ( K  -  j ) ) `  k )  =  ( K  -  k ) )
63 fprodshft.4 . 2  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )
641, 7, 55, 62, 63fprodf1o 11614 1  |-  ( ph  ->  prod_ j  e.  ( M ... N ) A  =  prod_ k  e.  ( ( K  -  N ) ... ( K  -  M )
) B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160    |-> cmpt 4079  (class class class)co 5891   CCcc 7827    - cmin 8146   ZZcz 9271   ...cfz 10026   prod_cprod 11576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-mulrcl 7928  ax-addcom 7929  ax-mulcom 7930  ax-addass 7931  ax-mulass 7932  ax-distr 7933  ax-i2m1 7934  ax-0lt1 7935  ax-1rid 7936  ax-0id 7937  ax-rnegex 7938  ax-precex 7939  ax-cnre 7940  ax-pre-ltirr 7941  ax-pre-ltwlin 7942  ax-pre-lttrn 7943  ax-pre-apti 7944  ax-pre-ltadd 7945  ax-pre-mulgt0 7946  ax-pre-mulext 7947  ax-arch 7948  ax-caucvg 7949
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-isom 5240  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-recs 6324  df-irdg 6389  df-frec 6410  df-1o 6435  df-oadd 6439  df-er 6553  df-en 6759  df-dom 6760  df-fin 6761  df-pnf 8012  df-mnf 8013  df-xr 8014  df-ltxr 8015  df-le 8016  df-sub 8148  df-neg 8149  df-reap 8550  df-ap 8557  df-div 8648  df-inn 8938  df-2 8996  df-3 8997  df-4 8998  df-n0 9195  df-z 9272  df-uz 9547  df-q 9638  df-rp 9672  df-fz 10027  df-fzo 10161  df-seqfrec 10464  df-exp 10538  df-ihash 10774  df-cj 10869  df-re 10870  df-im 10871  df-rsqrt 11025  df-abs 11026  df-clim 11305  df-proddc 11577
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator