Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fprodrev | Unicode version |
Description: Reversal of a finite product. (Contributed by Scott Fenton, 5-Jan-2018.) |
Ref | Expression |
---|---|
fprodshft.1 | |
fprodshft.2 | |
fprodshft.3 | |
fprodshft.4 | |
fprodrev.5 |
Ref | Expression |
---|---|
fprodrev |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodrev.5 | . 2 | |
2 | fprodshft.1 | . . . 4 | |
3 | fprodshft.3 | . . . 4 | |
4 | 2, 3 | zsubcld 9312 | . . 3 |
5 | fprodshft.2 | . . . 4 | |
6 | 2, 5 | zsubcld 9312 | . . 3 |
7 | 4, 6 | fzfigd 10360 | . 2 |
8 | eqid 2164 | . . 3 | |
9 | 2 | adantr 274 | . . . 4 |
10 | elfzelz 9954 | . . . . 5 | |
11 | 10 | adantl 275 | . . . 4 |
12 | 9, 11 | zsubcld 9312 | . . 3 |
13 | 2 | adantr 274 | . . . 4 |
14 | elfzelz 9954 | . . . . 5 | |
15 | 14 | adantl 275 | . . . 4 |
16 | 13, 15 | zsubcld 9312 | . . 3 |
17 | simprr 522 | . . . . . 6 | |
18 | simprl 521 | . . . . . . 7 | |
19 | 5 | adantr 274 | . . . . . . . 8 |
20 | 3 | adantr 274 | . . . . . . . 8 |
21 | 2 | adantr 274 | . . . . . . . 8 |
22 | 10 | ad2antrl 482 | . . . . . . . 8 |
23 | fzrev 10013 | . . . . . . . 8 | |
24 | 19, 20, 21, 22, 23 | syl22anc 1228 | . . . . . . 7 |
25 | 18, 24 | mpbid 146 | . . . . . 6 |
26 | 17, 25 | eqeltrd 2241 | . . . . 5 |
27 | oveq2 5847 | . . . . . . 7 | |
28 | 27 | ad2antll 483 | . . . . . 6 |
29 | 2 | zcnd 9308 | . . . . . . . 8 |
30 | 29 | adantr 274 | . . . . . . 7 |
31 | 10 | zcnd 9308 | . . . . . . . 8 |
32 | 31 | ad2antrl 482 | . . . . . . 7 |
33 | 30, 32 | nncand 8208 | . . . . . 6 |
34 | 28, 33 | eqtr2d 2198 | . . . . 5 |
35 | 26, 34 | jca 304 | . . . 4 |
36 | simprr 522 | . . . . . 6 | |
37 | simprl 521 | . . . . . . 7 | |
38 | 5 | adantr 274 | . . . . . . . 8 |
39 | 3 | adantr 274 | . . . . . . . 8 |
40 | 2 | adantr 274 | . . . . . . . 8 |
41 | 14 | ad2antrl 482 | . . . . . . . 8 |
42 | fzrev2 10014 | . . . . . . . 8 | |
43 | 38, 39, 40, 41, 42 | syl22anc 1228 | . . . . . . 7 |
44 | 37, 43 | mpbid 146 | . . . . . 6 |
45 | 36, 44 | eqeltrd 2241 | . . . . 5 |
46 | oveq2 5847 | . . . . . . 7 | |
47 | 46 | ad2antll 483 | . . . . . 6 |
48 | 29 | adantr 274 | . . . . . . 7 |
49 | 14 | zcnd 9308 | . . . . . . . 8 |
50 | 49 | ad2antrl 482 | . . . . . . 7 |
51 | 48, 50 | nncand 8208 | . . . . . 6 |
52 | 47, 51 | eqtr2d 2198 | . . . . 5 |
53 | 45, 52 | jca 304 | . . . 4 |
54 | 35, 53 | impbida 586 | . . 3 |
55 | 8, 12, 16, 54 | f1od 6038 | . 2 |
56 | oveq2 5847 | . . 3 | |
57 | simpr 109 | . . 3 | |
58 | 2 | adantr 274 | . . . 4 |
59 | elfzelz 9954 | . . . . 5 | |
60 | 59 | adantl 275 | . . . 4 |
61 | 58, 60 | zsubcld 9312 | . . 3 |
62 | 8, 56, 57, 61 | fvmptd3 5576 | . 2 |
63 | fprodshft.4 | . 2 | |
64 | 1, 7, 55, 62, 63 | fprodf1o 11523 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1342 wcel 2135 cmpt 4040 (class class class)co 5839 cc 7745 cmin 8063 cz 9185 cfz 9938 cprod 11485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-coll 4094 ax-sep 4097 ax-nul 4105 ax-pow 4150 ax-pr 4184 ax-un 4408 ax-setind 4511 ax-iinf 4562 ax-cnex 7838 ax-resscn 7839 ax-1cn 7840 ax-1re 7841 ax-icn 7842 ax-addcl 7843 ax-addrcl 7844 ax-mulcl 7845 ax-mulrcl 7846 ax-addcom 7847 ax-mulcom 7848 ax-addass 7849 ax-mulass 7850 ax-distr 7851 ax-i2m1 7852 ax-0lt1 7853 ax-1rid 7854 ax-0id 7855 ax-rnegex 7856 ax-precex 7857 ax-cnre 7858 ax-pre-ltirr 7859 ax-pre-ltwlin 7860 ax-pre-lttrn 7861 ax-pre-apti 7862 ax-pre-ltadd 7863 ax-pre-mulgt0 7864 ax-pre-mulext 7865 ax-arch 7866 ax-caucvg 7867 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 968 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-nel 2430 df-ral 2447 df-rex 2448 df-reu 2449 df-rmo 2450 df-rab 2451 df-v 2726 df-sbc 2950 df-csb 3044 df-dif 3116 df-un 3118 df-in 3120 df-ss 3127 df-nul 3408 df-if 3519 df-pw 3558 df-sn 3579 df-pr 3580 df-op 3582 df-uni 3787 df-int 3822 df-iun 3865 df-br 3980 df-opab 4041 df-mpt 4042 df-tr 4078 df-id 4268 df-po 4271 df-iso 4272 df-iord 4341 df-on 4343 df-ilim 4344 df-suc 4346 df-iom 4565 df-xp 4607 df-rel 4608 df-cnv 4609 df-co 4610 df-dm 4611 df-rn 4612 df-res 4613 df-ima 4614 df-iota 5150 df-fun 5187 df-fn 5188 df-f 5189 df-f1 5190 df-fo 5191 df-f1o 5192 df-fv 5193 df-isom 5194 df-riota 5795 df-ov 5842 df-oprab 5843 df-mpo 5844 df-1st 6103 df-2nd 6104 df-recs 6267 df-irdg 6332 df-frec 6353 df-1o 6378 df-oadd 6382 df-er 6495 df-en 6701 df-dom 6702 df-fin 6703 df-pnf 7929 df-mnf 7930 df-xr 7931 df-ltxr 7932 df-le 7933 df-sub 8065 df-neg 8066 df-reap 8467 df-ap 8474 df-div 8563 df-inn 8852 df-2 8910 df-3 8911 df-4 8912 df-n0 9109 df-z 9186 df-uz 9461 df-q 9552 df-rp 9584 df-fz 9939 df-fzo 10072 df-seqfrec 10375 df-exp 10449 df-ihash 10683 df-cj 10778 df-re 10779 df-im 10780 df-rsqrt 10934 df-abs 10935 df-clim 11214 df-proddc 11486 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |