ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nsgconj GIF version

Theorem nsgconj 13097
Description: The conjugation of an element of a normal subgroup is in the subgroup. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
isnsg3.1 𝑋 = (Base‘𝐺)
isnsg3.2 + = (+g𝐺)
isnsg3.3 = (-g𝐺)
Assertion
Ref Expression
nsgconj ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → ((𝐴 + 𝐵) 𝐴) ∈ 𝑆)

Proof of Theorem nsgconj
StepHypRef Expression
1 nsgsubg 13096 . . . . 5 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
213ad2ant1 1019 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
3 subgrcl 13070 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
42, 3syl 14 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → 𝐺 ∈ Grp)
5 simp2 999 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → 𝐴𝑋)
6 isnsg3.1 . . . . . 6 𝑋 = (Base‘𝐺)
76subgss 13065 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑋)
82, 7syl 14 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → 𝑆𝑋)
9 simp3 1000 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → 𝐵𝑆)
108, 9sseldd 3168 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → 𝐵𝑋)
11 isnsg3.2 . . . 4 + = (+g𝐺)
12 isnsg3.3 . . . 4 = (-g𝐺)
136, 11, 12grpaddsubass 12986 . . 3 ((𝐺 ∈ Grp ∧ (𝐴𝑋𝐵𝑋𝐴𝑋)) → ((𝐴 + 𝐵) 𝐴) = (𝐴 + (𝐵 𝐴)))
144, 5, 10, 5, 13syl13anc 1250 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → ((𝐴 + 𝐵) 𝐴) = (𝐴 + (𝐵 𝐴)))
156, 11, 12grpnpcan 12988 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐵𝑋𝐴𝑋) → ((𝐵 𝐴) + 𝐴) = 𝐵)
164, 10, 5, 15syl3anc 1248 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → ((𝐵 𝐴) + 𝐴) = 𝐵)
1716, 9eqeltrd 2264 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → ((𝐵 𝐴) + 𝐴) ∈ 𝑆)
18 simp1 998 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → 𝑆 ∈ (NrmSGrp‘𝐺))
196, 12grpsubcl 12976 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐵𝑋𝐴𝑋) → (𝐵 𝐴) ∈ 𝑋)
204, 10, 5, 19syl3anc 1248 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → (𝐵 𝐴) ∈ 𝑋)
216, 11nsgbi 13095 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝐵 𝐴) ∈ 𝑋𝐴𝑋) → (((𝐵 𝐴) + 𝐴) ∈ 𝑆 ↔ (𝐴 + (𝐵 𝐴)) ∈ 𝑆))
2218, 20, 5, 21syl3anc 1248 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → (((𝐵 𝐴) + 𝐴) ∈ 𝑆 ↔ (𝐴 + (𝐵 𝐴)) ∈ 𝑆))
2317, 22mpbid 147 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → (𝐴 + (𝐵 𝐴)) ∈ 𝑆)
2414, 23eqeltrd 2264 1 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → ((𝐴 + 𝐵) 𝐴) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 979   = wceq 1363  wcel 2158  wss 3141  cfv 5228  (class class class)co 5888  Basecbs 12475  +gcplusg 12550  Grpcgrp 12898  -gcsg 12900  SubGrpcsubg 13058  NrmSGrpcnsg 13059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1re 7918  ax-addrcl 7921
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-inn 8933  df-2 8991  df-ndx 12478  df-slot 12479  df-base 12481  df-plusg 12563  df-0g 12724  df-mgm 12793  df-sgrp 12826  df-mnd 12839  df-grp 12901  df-minusg 12902  df-sbg 12903  df-subg 13061  df-nsg 13062
This theorem is referenced by:  isnsg3  13098
  Copyright terms: Public domain W3C validator