ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nsgconj GIF version

Theorem nsgconj 13336
Description: The conjugation of an element of a normal subgroup is in the subgroup. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
isnsg3.1 𝑋 = (Base‘𝐺)
isnsg3.2 + = (+g𝐺)
isnsg3.3 = (-g𝐺)
Assertion
Ref Expression
nsgconj ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → ((𝐴 + 𝐵) 𝐴) ∈ 𝑆)

Proof of Theorem nsgconj
StepHypRef Expression
1 nsgsubg 13335 . . . . 5 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
213ad2ant1 1020 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
3 subgrcl 13309 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
42, 3syl 14 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → 𝐺 ∈ Grp)
5 simp2 1000 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → 𝐴𝑋)
6 isnsg3.1 . . . . . 6 𝑋 = (Base‘𝐺)
76subgss 13304 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑋)
82, 7syl 14 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → 𝑆𝑋)
9 simp3 1001 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → 𝐵𝑆)
108, 9sseldd 3184 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → 𝐵𝑋)
11 isnsg3.2 . . . 4 + = (+g𝐺)
12 isnsg3.3 . . . 4 = (-g𝐺)
136, 11, 12grpaddsubass 13222 . . 3 ((𝐺 ∈ Grp ∧ (𝐴𝑋𝐵𝑋𝐴𝑋)) → ((𝐴 + 𝐵) 𝐴) = (𝐴 + (𝐵 𝐴)))
144, 5, 10, 5, 13syl13anc 1251 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → ((𝐴 + 𝐵) 𝐴) = (𝐴 + (𝐵 𝐴)))
156, 11, 12grpnpcan 13224 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐵𝑋𝐴𝑋) → ((𝐵 𝐴) + 𝐴) = 𝐵)
164, 10, 5, 15syl3anc 1249 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → ((𝐵 𝐴) + 𝐴) = 𝐵)
1716, 9eqeltrd 2273 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → ((𝐵 𝐴) + 𝐴) ∈ 𝑆)
18 simp1 999 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → 𝑆 ∈ (NrmSGrp‘𝐺))
196, 12grpsubcl 13212 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐵𝑋𝐴𝑋) → (𝐵 𝐴) ∈ 𝑋)
204, 10, 5, 19syl3anc 1249 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → (𝐵 𝐴) ∈ 𝑋)
216, 11nsgbi 13334 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝐵 𝐴) ∈ 𝑋𝐴𝑋) → (((𝐵 𝐴) + 𝐴) ∈ 𝑆 ↔ (𝐴 + (𝐵 𝐴)) ∈ 𝑆))
2218, 20, 5, 21syl3anc 1249 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → (((𝐵 𝐴) + 𝐴) ∈ 𝑆 ↔ (𝐴 + (𝐵 𝐴)) ∈ 𝑆))
2317, 22mpbid 147 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → (𝐴 + (𝐵 𝐴)) ∈ 𝑆)
2414, 23eqeltrd 2273 1 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → ((𝐴 + 𝐵) 𝐴) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 980   = wceq 1364  wcel 2167  wss 3157  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  Grpcgrp 13132  -gcsg 13134  SubGrpcsubg 13297  NrmSGrpcnsg 13298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-sbg 13137  df-subg 13300  df-nsg 13301
This theorem is referenced by:  isnsg3  13337  ghmnsgima  13398  ghmnsgpreima  13399
  Copyright terms: Public domain W3C validator