![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nsgconj | GIF version |
Description: The conjugation of an element of a normal subgroup is in the subgroup. (Contributed by Mario Carneiro, 4-Feb-2015.) |
Ref | Expression |
---|---|
isnsg3.1 | ⊢ 𝑋 = (Base‘𝐺) |
isnsg3.2 | ⊢ + = (+g‘𝐺) |
isnsg3.3 | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
nsgconj | ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → ((𝐴 + 𝐵) − 𝐴) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsgsubg 13096 | . . . . 5 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | |
2 | 1 | 3ad2ant1 1019 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺)) |
3 | subgrcl 13070 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
4 | 2, 3 | syl 14 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝐺 ∈ Grp) |
5 | simp2 999 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝐴 ∈ 𝑋) | |
6 | isnsg3.1 | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
7 | 6 | subgss 13065 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑋) |
8 | 2, 7 | syl 14 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝑆 ⊆ 𝑋) |
9 | simp3 1000 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝐵 ∈ 𝑆) | |
10 | 8, 9 | sseldd 3168 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝐵 ∈ 𝑋) |
11 | isnsg3.2 | . . . 4 ⊢ + = (+g‘𝐺) | |
12 | isnsg3.3 | . . . 4 ⊢ − = (-g‘𝐺) | |
13 | 6, 11, 12 | grpaddsubass 12986 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐴 + 𝐵) − 𝐴) = (𝐴 + (𝐵 − 𝐴))) |
14 | 4, 5, 10, 5, 13 | syl13anc 1250 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → ((𝐴 + 𝐵) − 𝐴) = (𝐴 + (𝐵 − 𝐴))) |
15 | 6, 11, 12 | grpnpcan 12988 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐵 − 𝐴) + 𝐴) = 𝐵) |
16 | 4, 10, 5, 15 | syl3anc 1248 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → ((𝐵 − 𝐴) + 𝐴) = 𝐵) |
17 | 16, 9 | eqeltrd 2264 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → ((𝐵 − 𝐴) + 𝐴) ∈ 𝑆) |
18 | simp1 998 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝑆 ∈ (NrmSGrp‘𝐺)) | |
19 | 6, 12 | grpsubcl 12976 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵 − 𝐴) ∈ 𝑋) |
20 | 4, 10, 5, 19 | syl3anc 1248 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → (𝐵 − 𝐴) ∈ 𝑋) |
21 | 6, 11 | nsgbi 13095 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝐵 − 𝐴) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (((𝐵 − 𝐴) + 𝐴) ∈ 𝑆 ↔ (𝐴 + (𝐵 − 𝐴)) ∈ 𝑆)) |
22 | 18, 20, 5, 21 | syl3anc 1248 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → (((𝐵 − 𝐴) + 𝐴) ∈ 𝑆 ↔ (𝐴 + (𝐵 − 𝐴)) ∈ 𝑆)) |
23 | 17, 22 | mpbid 147 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → (𝐴 + (𝐵 − 𝐴)) ∈ 𝑆) |
24 | 14, 23 | eqeltrd 2264 | 1 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → ((𝐴 + 𝐵) − 𝐴) ∈ 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 979 = wceq 1363 ∈ wcel 2158 ⊆ wss 3141 ‘cfv 5228 (class class class)co 5888 Basecbs 12475 +gcplusg 12550 Grpcgrp 12898 -gcsg 12900 SubGrpcsubg 13058 NrmSGrpcnsg 13059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7915 ax-resscn 7916 ax-1re 7918 ax-addrcl 7921 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6154 df-2nd 6155 df-inn 8933 df-2 8991 df-ndx 12478 df-slot 12479 df-base 12481 df-plusg 12563 df-0g 12724 df-mgm 12793 df-sgrp 12826 df-mnd 12839 df-grp 12901 df-minusg 12902 df-sbg 12903 df-subg 13061 df-nsg 13062 |
This theorem is referenced by: isnsg3 13098 |
Copyright terms: Public domain | W3C validator |