| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nsgconj | GIF version | ||
| Description: The conjugation of an element of a normal subgroup is in the subgroup. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| isnsg3.1 | ⊢ 𝑋 = (Base‘𝐺) |
| isnsg3.2 | ⊢ + = (+g‘𝐺) |
| isnsg3.3 | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| nsgconj | ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → ((𝐴 + 𝐵) − 𝐴) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsgsubg 13616 | . . . . 5 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | |
| 2 | 1 | 3ad2ant1 1021 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺)) |
| 3 | subgrcl 13590 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
| 4 | 2, 3 | syl 14 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝐺 ∈ Grp) |
| 5 | simp2 1001 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝐴 ∈ 𝑋) | |
| 6 | isnsg3.1 | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
| 7 | 6 | subgss 13585 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑋) |
| 8 | 2, 7 | syl 14 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝑆 ⊆ 𝑋) |
| 9 | simp3 1002 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝐵 ∈ 𝑆) | |
| 10 | 8, 9 | sseldd 3198 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝐵 ∈ 𝑋) |
| 11 | isnsg3.2 | . . . 4 ⊢ + = (+g‘𝐺) | |
| 12 | isnsg3.3 | . . . 4 ⊢ − = (-g‘𝐺) | |
| 13 | 6, 11, 12 | grpaddsubass 13497 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐴 + 𝐵) − 𝐴) = (𝐴 + (𝐵 − 𝐴))) |
| 14 | 4, 5, 10, 5, 13 | syl13anc 1252 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → ((𝐴 + 𝐵) − 𝐴) = (𝐴 + (𝐵 − 𝐴))) |
| 15 | 6, 11, 12 | grpnpcan 13499 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐵 − 𝐴) + 𝐴) = 𝐵) |
| 16 | 4, 10, 5, 15 | syl3anc 1250 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → ((𝐵 − 𝐴) + 𝐴) = 𝐵) |
| 17 | 16, 9 | eqeltrd 2283 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → ((𝐵 − 𝐴) + 𝐴) ∈ 𝑆) |
| 18 | simp1 1000 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝑆 ∈ (NrmSGrp‘𝐺)) | |
| 19 | 6, 12 | grpsubcl 13487 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵 − 𝐴) ∈ 𝑋) |
| 20 | 4, 10, 5, 19 | syl3anc 1250 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → (𝐵 − 𝐴) ∈ 𝑋) |
| 21 | 6, 11 | nsgbi 13615 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝐵 − 𝐴) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (((𝐵 − 𝐴) + 𝐴) ∈ 𝑆 ↔ (𝐴 + (𝐵 − 𝐴)) ∈ 𝑆)) |
| 22 | 18, 20, 5, 21 | syl3anc 1250 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → (((𝐵 − 𝐴) + 𝐴) ∈ 𝑆 ↔ (𝐴 + (𝐵 − 𝐴)) ∈ 𝑆)) |
| 23 | 17, 22 | mpbid 147 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → (𝐴 + (𝐵 − 𝐴)) ∈ 𝑆) |
| 24 | 14, 23 | eqeltrd 2283 | 1 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → ((𝐴 + 𝐵) − 𝐴) ∈ 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ⊆ wss 3170 ‘cfv 5280 (class class class)co 5957 Basecbs 12907 +gcplusg 12984 Grpcgrp 13407 -gcsg 13409 SubGrpcsubg 13578 NrmSGrpcnsg 13579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-inn 9057 df-2 9115 df-ndx 12910 df-slot 12911 df-base 12913 df-plusg 12997 df-0g 13165 df-mgm 13263 df-sgrp 13309 df-mnd 13324 df-grp 13410 df-minusg 13411 df-sbg 13412 df-subg 13581 df-nsg 13582 |
| This theorem is referenced by: isnsg3 13618 ghmnsgima 13679 ghmnsgpreima 13680 |
| Copyright terms: Public domain | W3C validator |