| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > omct | GIF version | ||
| Description: ω is countable. (Contributed by Jim Kingdon, 23-Dec-2023.) |
| Ref | Expression |
|---|---|
| omct | ⊢ ∃𝑓 𝑓:ω–onto→(ω ⊔ 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi 5610 | . . 3 ⊢ ( I ↾ ω):ω–1-1-onto→ω | |
| 2 | f1ofo 5578 | . . 3 ⊢ (( I ↾ ω):ω–1-1-onto→ω → ( I ↾ ω):ω–onto→ω) | |
| 3 | omex 4684 | . . . . 5 ⊢ ω ∈ V | |
| 4 | resiexg 5049 | . . . . 5 ⊢ (ω ∈ V → ( I ↾ ω) ∈ V) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ( I ↾ ω) ∈ V |
| 6 | foeq1 5543 | . . . 4 ⊢ (𝑓 = ( I ↾ ω) → (𝑓:ω–onto→ω ↔ ( I ↾ ω):ω–onto→ω)) | |
| 7 | 5, 6 | spcev 2898 | . . 3 ⊢ (( I ↾ ω):ω–onto→ω → ∃𝑓 𝑓:ω–onto→ω) |
| 8 | 1, 2, 7 | mp2b 8 | . 2 ⊢ ∃𝑓 𝑓:ω–onto→ω |
| 9 | peano1 4685 | . . 3 ⊢ ∅ ∈ ω | |
| 10 | elex2 2816 | . . 3 ⊢ (∅ ∈ ω → ∃𝑥 𝑥 ∈ ω) | |
| 11 | ctm 7272 | . . 3 ⊢ (∃𝑥 𝑥 ∈ ω → (∃𝑓 𝑓:ω–onto→(ω ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto→ω)) | |
| 12 | 9, 10, 11 | mp2b 8 | . 2 ⊢ (∃𝑓 𝑓:ω–onto→(ω ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto→ω) |
| 13 | 8, 12 | mpbir 146 | 1 ⊢ ∃𝑓 𝑓:ω–onto→(ω ⊔ 1o) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∃wex 1538 ∈ wcel 2200 Vcvv 2799 ∅c0 3491 I cid 4378 ωcom 4681 ↾ cres 4720 –onto→wfo 5315 –1-1-onto→wf1o 5316 1oc1o 6553 ⊔ cdju 7200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-1st 6284 df-2nd 6285 df-1o 6560 df-dju 7201 df-inl 7210 df-inr 7211 df-case 7247 |
| This theorem is referenced by: omiunct 13010 |
| Copyright terms: Public domain | W3C validator |