![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > omct | GIF version |
Description: ω is countable. (Contributed by Jim Kingdon, 23-Dec-2023.) |
Ref | Expression |
---|---|
omct | ⊢ ∃𝑓 𝑓:ω–onto→(ω ⊔ 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oi 5539 | . . 3 ⊢ ( I ↾ ω):ω–1-1-onto→ω | |
2 | f1ofo 5508 | . . 3 ⊢ (( I ↾ ω):ω–1-1-onto→ω → ( I ↾ ω):ω–onto→ω) | |
3 | omex 4626 | . . . . 5 ⊢ ω ∈ V | |
4 | resiexg 4988 | . . . . 5 ⊢ (ω ∈ V → ( I ↾ ω) ∈ V) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ( I ↾ ω) ∈ V |
6 | foeq1 5473 | . . . 4 ⊢ (𝑓 = ( I ↾ ω) → (𝑓:ω–onto→ω ↔ ( I ↾ ω):ω–onto→ω)) | |
7 | 5, 6 | spcev 2856 | . . 3 ⊢ (( I ↾ ω):ω–onto→ω → ∃𝑓 𝑓:ω–onto→ω) |
8 | 1, 2, 7 | mp2b 8 | . 2 ⊢ ∃𝑓 𝑓:ω–onto→ω |
9 | peano1 4627 | . . 3 ⊢ ∅ ∈ ω | |
10 | elex2 2776 | . . 3 ⊢ (∅ ∈ ω → ∃𝑥 𝑥 ∈ ω) | |
11 | ctm 7170 | . . 3 ⊢ (∃𝑥 𝑥 ∈ ω → (∃𝑓 𝑓:ω–onto→(ω ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto→ω)) | |
12 | 9, 10, 11 | mp2b 8 | . 2 ⊢ (∃𝑓 𝑓:ω–onto→(ω ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto→ω) |
13 | 8, 12 | mpbir 146 | 1 ⊢ ∃𝑓 𝑓:ω–onto→(ω ⊔ 1o) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∃wex 1503 ∈ wcel 2164 Vcvv 2760 ∅c0 3447 I cid 4320 ωcom 4623 ↾ cres 4662 –onto→wfo 5253 –1-1-onto→wf1o 5254 1oc1o 6464 ⊔ cdju 7098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-1st 6195 df-2nd 6196 df-1o 6471 df-dju 7099 df-inl 7108 df-inr 7109 df-case 7145 |
This theorem is referenced by: omiunct 12604 |
Copyright terms: Public domain | W3C validator |