![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > omct | GIF version |
Description: ω is countable. (Contributed by Jim Kingdon, 23-Dec-2023.) |
Ref | Expression |
---|---|
omct | ⊢ ∃𝑓 𝑓:ω–onto→(ω ⊔ 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oi 5538 | . . 3 ⊢ ( I ↾ ω):ω–1-1-onto→ω | |
2 | f1ofo 5507 | . . 3 ⊢ (( I ↾ ω):ω–1-1-onto→ω → ( I ↾ ω):ω–onto→ω) | |
3 | omex 4625 | . . . . 5 ⊢ ω ∈ V | |
4 | resiexg 4987 | . . . . 5 ⊢ (ω ∈ V → ( I ↾ ω) ∈ V) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ( I ↾ ω) ∈ V |
6 | foeq1 5472 | . . . 4 ⊢ (𝑓 = ( I ↾ ω) → (𝑓:ω–onto→ω ↔ ( I ↾ ω):ω–onto→ω)) | |
7 | 5, 6 | spcev 2855 | . . 3 ⊢ (( I ↾ ω):ω–onto→ω → ∃𝑓 𝑓:ω–onto→ω) |
8 | 1, 2, 7 | mp2b 8 | . 2 ⊢ ∃𝑓 𝑓:ω–onto→ω |
9 | peano1 4626 | . . 3 ⊢ ∅ ∈ ω | |
10 | elex2 2776 | . . 3 ⊢ (∅ ∈ ω → ∃𝑥 𝑥 ∈ ω) | |
11 | ctm 7168 | . . 3 ⊢ (∃𝑥 𝑥 ∈ ω → (∃𝑓 𝑓:ω–onto→(ω ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto→ω)) | |
12 | 9, 10, 11 | mp2b 8 | . 2 ⊢ (∃𝑓 𝑓:ω–onto→(ω ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto→ω) |
13 | 8, 12 | mpbir 146 | 1 ⊢ ∃𝑓 𝑓:ω–onto→(ω ⊔ 1o) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∃wex 1503 ∈ wcel 2164 Vcvv 2760 ∅c0 3446 I cid 4319 ωcom 4622 ↾ cres 4661 –onto→wfo 5252 –1-1-onto→wf1o 5253 1oc1o 6462 ⊔ cdju 7096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-1st 6193 df-2nd 6194 df-1o 6469 df-dju 7097 df-inl 7106 df-inr 7107 df-case 7143 |
This theorem is referenced by: omiunct 12601 |
Copyright terms: Public domain | W3C validator |