| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > omct | GIF version | ||
| Description: ω is countable. (Contributed by Jim Kingdon, 23-Dec-2023.) |
| Ref | Expression |
|---|---|
| omct | ⊢ ∃𝑓 𝑓:ω–onto→(ω ⊔ 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi 5572 | . . 3 ⊢ ( I ↾ ω):ω–1-1-onto→ω | |
| 2 | f1ofo 5540 | . . 3 ⊢ (( I ↾ ω):ω–1-1-onto→ω → ( I ↾ ω):ω–onto→ω) | |
| 3 | omex 4648 | . . . . 5 ⊢ ω ∈ V | |
| 4 | resiexg 5012 | . . . . 5 ⊢ (ω ∈ V → ( I ↾ ω) ∈ V) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ( I ↾ ω) ∈ V |
| 6 | foeq1 5505 | . . . 4 ⊢ (𝑓 = ( I ↾ ω) → (𝑓:ω–onto→ω ↔ ( I ↾ ω):ω–onto→ω)) | |
| 7 | 5, 6 | spcev 2872 | . . 3 ⊢ (( I ↾ ω):ω–onto→ω → ∃𝑓 𝑓:ω–onto→ω) |
| 8 | 1, 2, 7 | mp2b 8 | . 2 ⊢ ∃𝑓 𝑓:ω–onto→ω |
| 9 | peano1 4649 | . . 3 ⊢ ∅ ∈ ω | |
| 10 | elex2 2790 | . . 3 ⊢ (∅ ∈ ω → ∃𝑥 𝑥 ∈ ω) | |
| 11 | ctm 7225 | . . 3 ⊢ (∃𝑥 𝑥 ∈ ω → (∃𝑓 𝑓:ω–onto→(ω ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto→ω)) | |
| 12 | 9, 10, 11 | mp2b 8 | . 2 ⊢ (∃𝑓 𝑓:ω–onto→(ω ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto→ω) |
| 13 | 8, 12 | mpbir 146 | 1 ⊢ ∃𝑓 𝑓:ω–onto→(ω ⊔ 1o) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∃wex 1516 ∈ wcel 2177 Vcvv 2773 ∅c0 3464 I cid 4342 ωcom 4645 ↾ cres 4684 –onto→wfo 5277 –1-1-onto→wf1o 5278 1oc1o 6507 ⊔ cdju 7153 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-iinf 4643 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-id 4347 df-iord 4420 df-on 4422 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-1st 6238 df-2nd 6239 df-1o 6514 df-dju 7154 df-inl 7163 df-inr 7164 df-case 7200 |
| This theorem is referenced by: omiunct 12885 |
| Copyright terms: Public domain | W3C validator |