Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > omct | GIF version |
Description: ω is countable. (Contributed by Jim Kingdon, 23-Dec-2023.) |
Ref | Expression |
---|---|
omct | ⊢ ∃𝑓 𝑓:ω–onto→(ω ⊔ 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oi 5470 | . . 3 ⊢ ( I ↾ ω):ω–1-1-onto→ω | |
2 | f1ofo 5439 | . . 3 ⊢ (( I ↾ ω):ω–1-1-onto→ω → ( I ↾ ω):ω–onto→ω) | |
3 | omex 4570 | . . . . 5 ⊢ ω ∈ V | |
4 | resiexg 4929 | . . . . 5 ⊢ (ω ∈ V → ( I ↾ ω) ∈ V) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ( I ↾ ω) ∈ V |
6 | foeq1 5406 | . . . 4 ⊢ (𝑓 = ( I ↾ ω) → (𝑓:ω–onto→ω ↔ ( I ↾ ω):ω–onto→ω)) | |
7 | 5, 6 | spcev 2821 | . . 3 ⊢ (( I ↾ ω):ω–onto→ω → ∃𝑓 𝑓:ω–onto→ω) |
8 | 1, 2, 7 | mp2b 8 | . 2 ⊢ ∃𝑓 𝑓:ω–onto→ω |
9 | peano1 4571 | . . 3 ⊢ ∅ ∈ ω | |
10 | elex2 2742 | . . 3 ⊢ (∅ ∈ ω → ∃𝑥 𝑥 ∈ ω) | |
11 | ctm 7074 | . . 3 ⊢ (∃𝑥 𝑥 ∈ ω → (∃𝑓 𝑓:ω–onto→(ω ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto→ω)) | |
12 | 9, 10, 11 | mp2b 8 | . 2 ⊢ (∃𝑓 𝑓:ω–onto→(ω ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto→ω) |
13 | 8, 12 | mpbir 145 | 1 ⊢ ∃𝑓 𝑓:ω–onto→(ω ⊔ 1o) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∃wex 1480 ∈ wcel 2136 Vcvv 2726 ∅c0 3409 I cid 4266 ωcom 4567 ↾ cres 4606 –onto→wfo 5186 –1-1-onto→wf1o 5187 1oc1o 6377 ⊔ cdju 7002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-1o 6384 df-dju 7003 df-inl 7012 df-inr 7013 df-case 7049 |
This theorem is referenced by: omiunct 12377 |
Copyright terms: Public domain | W3C validator |