![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > omct | GIF version |
Description: ω is countable. (Contributed by Jim Kingdon, 23-Dec-2023.) |
Ref | Expression |
---|---|
omct | ⊢ ∃𝑓 𝑓:ω–onto→(ω ⊔ 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oi 5501 | . . 3 ⊢ ( I ↾ ω):ω–1-1-onto→ω | |
2 | f1ofo 5470 | . . 3 ⊢ (( I ↾ ω):ω–1-1-onto→ω → ( I ↾ ω):ω–onto→ω) | |
3 | omex 4594 | . . . . 5 ⊢ ω ∈ V | |
4 | resiexg 4954 | . . . . 5 ⊢ (ω ∈ V → ( I ↾ ω) ∈ V) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ( I ↾ ω) ∈ V |
6 | foeq1 5436 | . . . 4 ⊢ (𝑓 = ( I ↾ ω) → (𝑓:ω–onto→ω ↔ ( I ↾ ω):ω–onto→ω)) | |
7 | 5, 6 | spcev 2834 | . . 3 ⊢ (( I ↾ ω):ω–onto→ω → ∃𝑓 𝑓:ω–onto→ω) |
8 | 1, 2, 7 | mp2b 8 | . 2 ⊢ ∃𝑓 𝑓:ω–onto→ω |
9 | peano1 4595 | . . 3 ⊢ ∅ ∈ ω | |
10 | elex2 2755 | . . 3 ⊢ (∅ ∈ ω → ∃𝑥 𝑥 ∈ ω) | |
11 | ctm 7110 | . . 3 ⊢ (∃𝑥 𝑥 ∈ ω → (∃𝑓 𝑓:ω–onto→(ω ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto→ω)) | |
12 | 9, 10, 11 | mp2b 8 | . 2 ⊢ (∃𝑓 𝑓:ω–onto→(ω ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto→ω) |
13 | 8, 12 | mpbir 146 | 1 ⊢ ∃𝑓 𝑓:ω–onto→(ω ⊔ 1o) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∃wex 1492 ∈ wcel 2148 Vcvv 2739 ∅c0 3424 I cid 4290 ωcom 4591 ↾ cres 4630 –onto→wfo 5216 –1-1-onto→wf1o 5217 1oc1o 6412 ⊔ cdju 7038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-1st 6143 df-2nd 6144 df-1o 6419 df-dju 7039 df-inl 7048 df-inr 7049 df-case 7085 |
This theorem is referenced by: omiunct 12447 |
Copyright terms: Public domain | W3C validator |