| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opprmulfvalg | GIF version | ||
| Description: Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| opprval.1 | ⊢ 𝐵 = (Base‘𝑅) |
| opprval.2 | ⊢ · = (.r‘𝑅) |
| opprval.3 | ⊢ 𝑂 = (oppr‘𝑅) |
| opprmulfval.4 | ⊢ ∙ = (.r‘𝑂) |
| Ref | Expression |
|---|---|
| opprmulfvalg | ⊢ (𝑅 ∈ 𝑉 → ∙ = tpos · ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprmulfval.4 | . 2 ⊢ ∙ = (.r‘𝑂) | |
| 2 | opprval.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | opprval.2 | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 4 | opprval.3 | . . . . 5 ⊢ 𝑂 = (oppr‘𝑅) | |
| 5 | 2, 3, 4 | opprvalg 14032 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
| 6 | 5 | fveq2d 5631 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑂) = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) |
| 7 | mulrslid 13165 | . . . . . . 7 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
| 8 | 7 | slotex 13059 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) ∈ V) |
| 9 | 3, 8 | eqeltrid 2316 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → · ∈ V) |
| 10 | tposexg 6404 | . . . . 5 ⊢ ( · ∈ V → tpos · ∈ V) | |
| 11 | 9, 10 | syl 14 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → tpos · ∈ V) |
| 12 | 7 | setsslid 13083 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ tpos · ∈ V) → tpos · = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) |
| 13 | 11, 12 | mpdan 421 | . . 3 ⊢ (𝑅 ∈ 𝑉 → tpos · = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) |
| 14 | 6, 13 | eqtr4d 2265 | . 2 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑂) = tpos · ) |
| 15 | 1, 14 | eqtrid 2274 | 1 ⊢ (𝑅 ∈ 𝑉 → ∙ = tpos · ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 〈cop 3669 ‘cfv 5318 (class class class)co 6001 tpos ctpos 6390 ndxcnx 13029 sSet csts 13030 Basecbs 13032 .rcmulr 13111 opprcoppr 14030 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-tpos 6391 df-inn 9111 df-2 9169 df-3 9170 df-ndx 13035 df-slot 13036 df-sets 13039 df-mulr 13124 df-oppr 14031 |
| This theorem is referenced by: opprmulg 14034 |
| Copyright terms: Public domain | W3C validator |