ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprmulfvalg GIF version

Theorem opprmulfvalg 13247
Description: Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
opprval.1 𝐡 = (Baseβ€˜π‘…)
opprval.2 Β· = (.rβ€˜π‘…)
opprval.3 𝑂 = (opprβ€˜π‘…)
opprmulfval.4 βˆ™ = (.rβ€˜π‘‚)
Assertion
Ref Expression
opprmulfvalg (𝑅 ∈ 𝑉 β†’ βˆ™ = tpos Β· )

Proof of Theorem opprmulfvalg
StepHypRef Expression
1 opprmulfval.4 . 2 βˆ™ = (.rβ€˜π‘‚)
2 opprval.1 . . . . 5 𝐡 = (Baseβ€˜π‘…)
3 opprval.2 . . . . 5 Β· = (.rβ€˜π‘…)
4 opprval.3 . . . . 5 𝑂 = (opprβ€˜π‘…)
52, 3, 4opprvalg 13246 . . . 4 (𝑅 ∈ 𝑉 β†’ 𝑂 = (𝑅 sSet ⟨(.rβ€˜ndx), tpos Β· ⟩))
65fveq2d 5521 . . 3 (𝑅 ∈ 𝑉 β†’ (.rβ€˜π‘‚) = (.rβ€˜(𝑅 sSet ⟨(.rβ€˜ndx), tpos Β· ⟩)))
7 mulrslid 12592 . . . . . . 7 (.r = Slot (.rβ€˜ndx) ∧ (.rβ€˜ndx) ∈ β„•)
87slotex 12491 . . . . . 6 (𝑅 ∈ 𝑉 β†’ (.rβ€˜π‘…) ∈ V)
93, 8eqeltrid 2264 . . . . 5 (𝑅 ∈ 𝑉 β†’ Β· ∈ V)
10 tposexg 6261 . . . . 5 ( Β· ∈ V β†’ tpos Β· ∈ V)
119, 10syl 14 . . . 4 (𝑅 ∈ 𝑉 β†’ tpos Β· ∈ V)
127setsslid 12515 . . . 4 ((𝑅 ∈ 𝑉 ∧ tpos Β· ∈ V) β†’ tpos Β· = (.rβ€˜(𝑅 sSet ⟨(.rβ€˜ndx), tpos Β· ⟩)))
1311, 12mpdan 421 . . 3 (𝑅 ∈ 𝑉 β†’ tpos Β· = (.rβ€˜(𝑅 sSet ⟨(.rβ€˜ndx), tpos Β· ⟩)))
146, 13eqtr4d 2213 . 2 (𝑅 ∈ 𝑉 β†’ (.rβ€˜π‘‚) = tpos Β· )
151, 14eqtrid 2222 1 (𝑅 ∈ 𝑉 β†’ βˆ™ = tpos Β· )
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   = wceq 1353   ∈ wcel 2148  Vcvv 2739  βŸ¨cop 3597  β€˜cfv 5218  (class class class)co 5877  tpos ctpos 6247  ndxcnx 12461   sSet csts 12462  Basecbs 12464  .rcmulr 12539  opprcoppr 13244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-tpos 6248  df-inn 8922  df-2 8980  df-3 8981  df-ndx 12467  df-slot 12468  df-sets 12471  df-mulr 12552  df-oppr 13245
This theorem is referenced by:  opprmulg  13248
  Copyright terms: Public domain W3C validator