| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opprmulfvalg | GIF version | ||
| Description: Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| opprval.1 | ⊢ 𝐵 = (Base‘𝑅) |
| opprval.2 | ⊢ · = (.r‘𝑅) |
| opprval.3 | ⊢ 𝑂 = (oppr‘𝑅) |
| opprmulfval.4 | ⊢ ∙ = (.r‘𝑂) |
| Ref | Expression |
|---|---|
| opprmulfvalg | ⊢ (𝑅 ∈ 𝑉 → ∙ = tpos · ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprmulfval.4 | . 2 ⊢ ∙ = (.r‘𝑂) | |
| 2 | opprval.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | opprval.2 | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 4 | opprval.3 | . . . . 5 ⊢ 𝑂 = (oppr‘𝑅) | |
| 5 | 2, 3, 4 | opprvalg 13946 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
| 6 | 5 | fveq2d 5603 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑂) = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) |
| 7 | mulrslid 13079 | . . . . . . 7 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
| 8 | 7 | slotex 12974 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) ∈ V) |
| 9 | 3, 8 | eqeltrid 2294 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → · ∈ V) |
| 10 | tposexg 6367 | . . . . 5 ⊢ ( · ∈ V → tpos · ∈ V) | |
| 11 | 9, 10 | syl 14 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → tpos · ∈ V) |
| 12 | 7 | setsslid 12998 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ tpos · ∈ V) → tpos · = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) |
| 13 | 11, 12 | mpdan 421 | . . 3 ⊢ (𝑅 ∈ 𝑉 → tpos · = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) |
| 14 | 6, 13 | eqtr4d 2243 | . 2 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑂) = tpos · ) |
| 15 | 1, 14 | eqtrid 2252 | 1 ⊢ (𝑅 ∈ 𝑉 → ∙ = tpos · ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 Vcvv 2776 〈cop 3646 ‘cfv 5290 (class class class)co 5967 tpos ctpos 6353 ndxcnx 12944 sSet csts 12945 Basecbs 12947 .rcmulr 13025 opprcoppr 13944 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-tpos 6354 df-inn 9072 df-2 9130 df-3 9131 df-ndx 12950 df-slot 12951 df-sets 12954 df-mulr 13038 df-oppr 13945 |
| This theorem is referenced by: opprmulg 13948 |
| Copyright terms: Public domain | W3C validator |