| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > opprmulfvalg | GIF version | ||
| Description: Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) | 
| Ref | Expression | 
|---|---|
| opprval.1 | ⊢ 𝐵 = (Base‘𝑅) | 
| opprval.2 | ⊢ · = (.r‘𝑅) | 
| opprval.3 | ⊢ 𝑂 = (oppr‘𝑅) | 
| opprmulfval.4 | ⊢ ∙ = (.r‘𝑂) | 
| Ref | Expression | 
|---|---|
| opprmulfvalg | ⊢ (𝑅 ∈ 𝑉 → ∙ = tpos · ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opprmulfval.4 | . 2 ⊢ ∙ = (.r‘𝑂) | |
| 2 | opprval.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | opprval.2 | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 4 | opprval.3 | . . . . 5 ⊢ 𝑂 = (oppr‘𝑅) | |
| 5 | 2, 3, 4 | opprvalg 13625 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos · 〉)) | 
| 6 | 5 | fveq2d 5562 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑂) = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) | 
| 7 | mulrslid 12809 | . . . . . . 7 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
| 8 | 7 | slotex 12705 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) ∈ V) | 
| 9 | 3, 8 | eqeltrid 2283 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → · ∈ V) | 
| 10 | tposexg 6316 | . . . . 5 ⊢ ( · ∈ V → tpos · ∈ V) | |
| 11 | 9, 10 | syl 14 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → tpos · ∈ V) | 
| 12 | 7 | setsslid 12729 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ tpos · ∈ V) → tpos · = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) | 
| 13 | 11, 12 | mpdan 421 | . . 3 ⊢ (𝑅 ∈ 𝑉 → tpos · = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) | 
| 14 | 6, 13 | eqtr4d 2232 | . 2 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑂) = tpos · ) | 
| 15 | 1, 14 | eqtrid 2241 | 1 ⊢ (𝑅 ∈ 𝑉 → ∙ = tpos · ) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 〈cop 3625 ‘cfv 5258 (class class class)co 5922 tpos ctpos 6302 ndxcnx 12675 sSet csts 12676 Basecbs 12678 .rcmulr 12756 opprcoppr 13623 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-tpos 6303 df-inn 8991 df-2 9049 df-3 9050 df-ndx 12681 df-slot 12682 df-sets 12685 df-mulr 12769 df-oppr 13624 | 
| This theorem is referenced by: opprmulg 13627 | 
| Copyright terms: Public domain | W3C validator |