![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opprmulfvalg | GIF version |
Description: Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
opprval.1 | β’ π΅ = (Baseβπ ) |
opprval.2 | β’ Β· = (.rβπ ) |
opprval.3 | β’ π = (opprβπ ) |
opprmulfval.4 | β’ β = (.rβπ) |
Ref | Expression |
---|---|
opprmulfvalg | β’ (π β π β β = tpos Β· ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprmulfval.4 | . 2 β’ β = (.rβπ) | |
2 | opprval.1 | . . . . 5 β’ π΅ = (Baseβπ ) | |
3 | opprval.2 | . . . . 5 β’ Β· = (.rβπ ) | |
4 | opprval.3 | . . . . 5 β’ π = (opprβπ ) | |
5 | 2, 3, 4 | opprvalg 13246 | . . . 4 β’ (π β π β π = (π sSet β¨(.rβndx), tpos Β· β©)) |
6 | 5 | fveq2d 5521 | . . 3 β’ (π β π β (.rβπ) = (.rβ(π sSet β¨(.rβndx), tpos Β· β©))) |
7 | mulrslid 12592 | . . . . . . 7 β’ (.r = Slot (.rβndx) β§ (.rβndx) β β) | |
8 | 7 | slotex 12491 | . . . . . 6 β’ (π β π β (.rβπ ) β V) |
9 | 3, 8 | eqeltrid 2264 | . . . . 5 β’ (π β π β Β· β V) |
10 | tposexg 6261 | . . . . 5 β’ ( Β· β V β tpos Β· β V) | |
11 | 9, 10 | syl 14 | . . . 4 β’ (π β π β tpos Β· β V) |
12 | 7 | setsslid 12515 | . . . 4 β’ ((π β π β§ tpos Β· β V) β tpos Β· = (.rβ(π sSet β¨(.rβndx), tpos Β· β©))) |
13 | 11, 12 | mpdan 421 | . . 3 β’ (π β π β tpos Β· = (.rβ(π sSet β¨(.rβndx), tpos Β· β©))) |
14 | 6, 13 | eqtr4d 2213 | . 2 β’ (π β π β (.rβπ) = tpos Β· ) |
15 | 1, 14 | eqtrid 2222 | 1 β’ (π β π β β = tpos Β· ) |
Colors of variables: wff set class |
Syntax hints: β wi 4 = wceq 1353 β wcel 2148 Vcvv 2739 β¨cop 3597 βcfv 5218 (class class class)co 5877 tpos ctpos 6247 ndxcnx 12461 sSet csts 12462 Basecbs 12464 .rcmulr 12539 opprcoppr 13244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1re 7907 ax-addrcl 7910 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-tpos 6248 df-inn 8922 df-2 8980 df-3 8981 df-ndx 12467 df-slot 12468 df-sets 12471 df-mulr 12552 df-oppr 13245 |
This theorem is referenced by: opprmulg 13248 |
Copyright terms: Public domain | W3C validator |