ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprmulfvalg GIF version

Theorem opprmulfvalg 14033
Description: Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
opprval.1 𝐵 = (Base‘𝑅)
opprval.2 · = (.r𝑅)
opprval.3 𝑂 = (oppr𝑅)
opprmulfval.4 = (.r𝑂)
Assertion
Ref Expression
opprmulfvalg (𝑅𝑉 = tpos · )

Proof of Theorem opprmulfvalg
StepHypRef Expression
1 opprmulfval.4 . 2 = (.r𝑂)
2 opprval.1 . . . . 5 𝐵 = (Base‘𝑅)
3 opprval.2 . . . . 5 · = (.r𝑅)
4 opprval.3 . . . . 5 𝑂 = (oppr𝑅)
52, 3, 4opprvalg 14032 . . . 4 (𝑅𝑉𝑂 = (𝑅 sSet ⟨(.r‘ndx), tpos · ⟩))
65fveq2d 5631 . . 3 (𝑅𝑉 → (.r𝑂) = (.r‘(𝑅 sSet ⟨(.r‘ndx), tpos · ⟩)))
7 mulrslid 13165 . . . . . . 7 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
87slotex 13059 . . . . . 6 (𝑅𝑉 → (.r𝑅) ∈ V)
93, 8eqeltrid 2316 . . . . 5 (𝑅𝑉· ∈ V)
10 tposexg 6404 . . . . 5 ( · ∈ V → tpos · ∈ V)
119, 10syl 14 . . . 4 (𝑅𝑉 → tpos · ∈ V)
127setsslid 13083 . . . 4 ((𝑅𝑉 ∧ tpos · ∈ V) → tpos · = (.r‘(𝑅 sSet ⟨(.r‘ndx), tpos · ⟩)))
1311, 12mpdan 421 . . 3 (𝑅𝑉 → tpos · = (.r‘(𝑅 sSet ⟨(.r‘ndx), tpos · ⟩)))
146, 13eqtr4d 2265 . 2 (𝑅𝑉 → (.r𝑂) = tpos · )
151, 14eqtrid 2274 1 (𝑅𝑉 = tpos · )
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  Vcvv 2799  cop 3669  cfv 5318  (class class class)co 6001  tpos ctpos 6390  ndxcnx 13029   sSet csts 13030  Basecbs 13032  .rcmulr 13111  opprcoppr 14030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-tpos 6391  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-sets 13039  df-mulr 13124  df-oppr 14031
This theorem is referenced by:  opprmulg  14034
  Copyright terms: Public domain W3C validator