![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opprmulfvalg | GIF version |
Description: Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
opprval.1 | ⊢ 𝐵 = (Base‘𝑅) |
opprval.2 | ⊢ · = (.r‘𝑅) |
opprval.3 | ⊢ 𝑂 = (oppr‘𝑅) |
opprmulfval.4 | ⊢ ∙ = (.r‘𝑂) |
Ref | Expression |
---|---|
opprmulfvalg | ⊢ (𝑅 ∈ 𝑉 → ∙ = tpos · ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprmulfval.4 | . 2 ⊢ ∙ = (.r‘𝑂) | |
2 | opprval.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
3 | opprval.2 | . . . . 5 ⊢ · = (.r‘𝑅) | |
4 | opprval.3 | . . . . 5 ⊢ 𝑂 = (oppr‘𝑅) | |
5 | 2, 3, 4 | opprvalg 13568 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
6 | 5 | fveq2d 5559 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑂) = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) |
7 | mulrslid 12752 | . . . . . . 7 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
8 | 7 | slotex 12648 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) ∈ V) |
9 | 3, 8 | eqeltrid 2280 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → · ∈ V) |
10 | tposexg 6313 | . . . . 5 ⊢ ( · ∈ V → tpos · ∈ V) | |
11 | 9, 10 | syl 14 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → tpos · ∈ V) |
12 | 7 | setsslid 12672 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ tpos · ∈ V) → tpos · = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) |
13 | 11, 12 | mpdan 421 | . . 3 ⊢ (𝑅 ∈ 𝑉 → tpos · = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) |
14 | 6, 13 | eqtr4d 2229 | . 2 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑂) = tpos · ) |
15 | 1, 14 | eqtrid 2238 | 1 ⊢ (𝑅 ∈ 𝑉 → ∙ = tpos · ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 〈cop 3622 ‘cfv 5255 (class class class)co 5919 tpos ctpos 6299 ndxcnx 12618 sSet csts 12619 Basecbs 12621 .rcmulr 12699 opprcoppr 13566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-tpos 6300 df-inn 8985 df-2 9043 df-3 9044 df-ndx 12624 df-slot 12625 df-sets 12628 df-mulr 12712 df-oppr 13567 |
This theorem is referenced by: opprmulg 13570 |
Copyright terms: Public domain | W3C validator |