| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opprsllem | GIF version | ||
| Description: Lemma for opprbasg 13707 and oppraddg 13708. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by AV, 6-Nov-2024.) |
| Ref | Expression |
|---|---|
| opprbas.1 | ⊢ 𝑂 = (oppr‘𝑅) |
| opprsllem.2 | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| opprlem.3 | ⊢ (𝐸‘ndx) ≠ (.r‘ndx) |
| Ref | Expression |
|---|---|
| opprsllem | ⊢ (𝑅 ∈ 𝑉 → (𝐸‘𝑅) = (𝐸‘𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulrslid 12834 | . . . . 5 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
| 2 | 1 | slotex 12730 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) ∈ V) |
| 3 | tposexg 6325 | . . . 4 ⊢ ((.r‘𝑅) ∈ V → tpos (.r‘𝑅) ∈ V) | |
| 4 | 2, 3 | syl 14 | . . 3 ⊢ (𝑅 ∈ 𝑉 → tpos (.r‘𝑅) ∈ V) |
| 5 | opprsllem.2 | . . . 4 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
| 6 | opprlem.3 | . . . 4 ⊢ (𝐸‘ndx) ≠ (.r‘ndx) | |
| 7 | 1 | simpri 113 | . . . 4 ⊢ (.r‘ndx) ∈ ℕ |
| 8 | 5, 6, 7 | setsslnid 12755 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ tpos (.r‘𝑅) ∈ V) → (𝐸‘𝑅) = (𝐸‘(𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉))) |
| 9 | 4, 8 | mpdan 421 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝐸‘𝑅) = (𝐸‘(𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉))) |
| 10 | eqid 2196 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 11 | eqid 2196 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 12 | opprbas.1 | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
| 13 | 10, 11, 12 | opprvalg 13701 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉)) |
| 14 | 13 | fveq2d 5565 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝐸‘𝑂) = (𝐸‘(𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉))) |
| 15 | 9, 14 | eqtr4d 2232 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝐸‘𝑅) = (𝐸‘𝑂)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 Vcvv 2763 〈cop 3626 ‘cfv 5259 (class class class)co 5925 tpos ctpos 6311 ℕcn 9007 ndxcnx 12700 sSet csts 12701 Slot cslot 12702 Basecbs 12703 .rcmulr 12781 opprcoppr 13699 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-tpos 6312 df-inn 9008 df-2 9066 df-3 9067 df-ndx 12706 df-slot 12707 df-sets 12710 df-mulr 12794 df-oppr 13700 |
| This theorem is referenced by: opprbasg 13707 oppraddg 13708 |
| Copyright terms: Public domain | W3C validator |