| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opprsllem | GIF version | ||
| Description: Lemma for opprbasg 13837 and oppraddg 13838. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by AV, 6-Nov-2024.) |
| Ref | Expression |
|---|---|
| opprbas.1 | ⊢ 𝑂 = (oppr‘𝑅) |
| opprsllem.2 | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| opprlem.3 | ⊢ (𝐸‘ndx) ≠ (.r‘ndx) |
| Ref | Expression |
|---|---|
| opprsllem | ⊢ (𝑅 ∈ 𝑉 → (𝐸‘𝑅) = (𝐸‘𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulrslid 12964 | . . . . 5 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
| 2 | 1 | slotex 12859 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) ∈ V) |
| 3 | tposexg 6344 | . . . 4 ⊢ ((.r‘𝑅) ∈ V → tpos (.r‘𝑅) ∈ V) | |
| 4 | 2, 3 | syl 14 | . . 3 ⊢ (𝑅 ∈ 𝑉 → tpos (.r‘𝑅) ∈ V) |
| 5 | opprsllem.2 | . . . 4 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
| 6 | opprlem.3 | . . . 4 ⊢ (𝐸‘ndx) ≠ (.r‘ndx) | |
| 7 | 1 | simpri 113 | . . . 4 ⊢ (.r‘ndx) ∈ ℕ |
| 8 | 5, 6, 7 | setsslnid 12884 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ tpos (.r‘𝑅) ∈ V) → (𝐸‘𝑅) = (𝐸‘(𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉))) |
| 9 | 4, 8 | mpdan 421 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝐸‘𝑅) = (𝐸‘(𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉))) |
| 10 | eqid 2205 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 11 | eqid 2205 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 12 | opprbas.1 | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
| 13 | 10, 11, 12 | opprvalg 13831 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉)) |
| 14 | 13 | fveq2d 5580 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝐸‘𝑂) = (𝐸‘(𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉))) |
| 15 | 9, 14 | eqtr4d 2241 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝐸‘𝑅) = (𝐸‘𝑂)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 ≠ wne 2376 Vcvv 2772 〈cop 3636 ‘cfv 5271 (class class class)co 5944 tpos ctpos 6330 ℕcn 9036 ndxcnx 12829 sSet csts 12830 Slot cslot 12831 Basecbs 12832 .rcmulr 12910 opprcoppr 13829 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-tpos 6331 df-inn 9037 df-2 9095 df-3 9096 df-ndx 12835 df-slot 12836 df-sets 12839 df-mulr 12923 df-oppr 13830 |
| This theorem is referenced by: opprbasg 13837 oppraddg 13838 |
| Copyright terms: Public domain | W3C validator |