| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opprbasg | Unicode version | ||
| Description: Base set of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Proof shortened by AV, 6-Nov-2024.) |
| Ref | Expression |
|---|---|
| opprbas.1 |
|
| opprbas.2 |
|
| Ref | Expression |
|---|---|
| opprbasg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprbas.2 |
. 2
| |
| 2 | opprbas.1 |
. . 3
| |
| 3 | baseslid 12889 |
. . 3
| |
| 4 | basendxnmulrndx 12966 |
. . 3
| |
| 5 | 2, 3, 4 | opprsllem 13836 |
. 2
|
| 6 | 1, 5 | eqtrid 2250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-pre-ltirr 8037 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-tpos 6331 df-pnf 8109 df-mnf 8110 df-ltxr 8112 df-inn 9037 df-2 9095 df-3 9096 df-ndx 12835 df-slot 12836 df-base 12838 df-sets 12839 df-mulr 12923 df-oppr 13830 |
| This theorem is referenced by: opprrng 13839 opprrngbg 13840 opprring 13841 opprringbg 13842 oppr0g 13843 oppr1g 13844 opprnegg 13845 opprsubgg 13846 mulgass3 13847 1unit 13869 opprunitd 13872 crngunit 13873 unitmulcl 13875 unitgrp 13878 unitnegcl 13892 unitpropdg 13910 rhmopp 13938 elrhmunit 13939 subrguss 13998 subrgunit 14001 opprdomnbg 14036 isridlrng 14244 isridl 14266 ridl1 14273 2idlcpblrng 14285 crngridl 14292 |
| Copyright terms: Public domain | W3C validator |