ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprbasg Unicode version

Theorem opprbasg 14038
Description: Base set of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Proof shortened by AV, 6-Nov-2024.)
Hypotheses
Ref Expression
opprbas.1  |-  O  =  (oppr
`  R )
opprbas.2  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
opprbasg  |-  ( R  e.  V  ->  B  =  ( Base `  O
) )

Proof of Theorem opprbasg
StepHypRef Expression
1 opprbas.2 . 2  |-  B  =  ( Base `  R
)
2 opprbas.1 . . 3  |-  O  =  (oppr
`  R )
3 baseslid 13090 . . 3  |-  ( Base 
= Slot  ( Base `  ndx )  /\  ( Base `  ndx )  e.  NN )
4 basendxnmulrndx 13167 . . 3  |-  ( Base `  ndx )  =/=  ( .r `  ndx )
52, 3, 4opprsllem 14037 . 2  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  O
) )
61, 5eqtrid 2274 1  |-  ( R  e.  V  ->  B  =  ( Base `  O
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   ` cfv 5318   Basecbs 13032  opprcoppr 14030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-tpos 6391  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-mulr 13124  df-oppr 14031
This theorem is referenced by:  opprrng  14040  opprrngbg  14041  opprring  14042  opprringbg  14043  oppr0g  14044  oppr1g  14045  opprnegg  14046  opprsubgg  14047  mulgass3  14048  1unit  14071  opprunitd  14074  crngunit  14075  unitmulcl  14077  unitgrp  14080  unitnegcl  14094  unitpropdg  14112  rhmopp  14140  elrhmunit  14141  subrguss  14200  subrgunit  14203  opprdomnbg  14238  isridlrng  14446  isridl  14468  ridl1  14475  2idlcpblrng  14487  crngridl  14494
  Copyright terms: Public domain W3C validator