ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprbasg Unicode version

Theorem opprbasg 13837
Description: Base set of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Proof shortened by AV, 6-Nov-2024.)
Hypotheses
Ref Expression
opprbas.1  |-  O  =  (oppr
`  R )
opprbas.2  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
opprbasg  |-  ( R  e.  V  ->  B  =  ( Base `  O
) )

Proof of Theorem opprbasg
StepHypRef Expression
1 opprbas.2 . 2  |-  B  =  ( Base `  R
)
2 opprbas.1 . . 3  |-  O  =  (oppr
`  R )
3 baseslid 12889 . . 3  |-  ( Base 
= Slot  ( Base `  ndx )  /\  ( Base `  ndx )  e.  NN )
4 basendxnmulrndx 12966 . . 3  |-  ( Base `  ndx )  =/=  ( .r `  ndx )
52, 3, 4opprsllem 13836 . 2  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  O
) )
61, 5eqtrid 2250 1  |-  ( R  e.  V  ->  B  =  ( Base `  O
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   ` cfv 5271   Basecbs 12832  opprcoppr 13829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-tpos 6331  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-mulr 12923  df-oppr 13830
This theorem is referenced by:  opprrng  13839  opprrngbg  13840  opprring  13841  opprringbg  13842  oppr0g  13843  oppr1g  13844  opprnegg  13845  opprsubgg  13846  mulgass3  13847  1unit  13869  opprunitd  13872  crngunit  13873  unitmulcl  13875  unitgrp  13878  unitnegcl  13892  unitpropdg  13910  rhmopp  13938  elrhmunit  13939  subrguss  13998  subrgunit  14001  opprdomnbg  14036  isridlrng  14244  isridl  14266  ridl1  14273  2idlcpblrng  14285  crngridl  14292
  Copyright terms: Public domain W3C validator