ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opvtxfv Unicode version

Theorem opvtxfv 15817
Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020.)
Assertion
Ref Expression
opvtxfv  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  (Vtx `  <. V ,  E >. )  =  V )

Proof of Theorem opvtxfv
StepHypRef Expression
1 opelvvg 4767 . . 3  |-  ( ( V  e.  X  /\  E  e.  Y )  -> 
<. V ,  E >.  e.  ( _V  X.  _V ) )
2 opvtxval 15816 . . 3  |-  ( <. V ,  E >.  e.  ( _V  X.  _V )  ->  (Vtx `  <. V ,  E >. )  =  ( 1st `  <. V ,  E >. )
)
31, 2syl 14 . 2  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  (Vtx `  <. V ,  E >. )  =  ( 1st `  <. V ,  E >. ) )
4 op1stg 6294 . 2  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  ( 1st `  <. V ,  E >. )  =  V )
53, 4eqtrd 2262 1  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  (Vtx `  <. V ,  E >. )  =  V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799   <.cop 3669    X. cxp 4716   ` cfv 5317   1stc1st 6282  Vtxcvtx 15807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fo 5323  df-fv 5325  df-1st 6284  df-inn 9107  df-ndx 13030  df-slot 13031  df-base 13033  df-vtx 15809
This theorem is referenced by:  opvtxov  15818  opvtxfvi  15822  gropd  15842  isuhgropm  15875  uhgrunop  15881  upgrop  15898  upgr1eopdc  15917  upgrunop  15919  umgrunop  15921  isuspgropen  15956  isusgropen  15957  ausgrusgrben  15960
  Copyright terms: Public domain W3C validator