ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opvtxfv Unicode version

Theorem opvtxfv 15561
Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020.)
Assertion
Ref Expression
opvtxfv  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  (Vtx `  <. V ,  E >. )  =  V )

Proof of Theorem opvtxfv
StepHypRef Expression
1 opelvvg 4723 . . 3  |-  ( ( V  e.  X  /\  E  e.  Y )  -> 
<. V ,  E >.  e.  ( _V  X.  _V ) )
2 opvtxval 15560 . . 3  |-  ( <. V ,  E >.  e.  ( _V  X.  _V )  ->  (Vtx `  <. V ,  E >. )  =  ( 1st `  <. V ,  E >. )
)
31, 2syl 14 . 2  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  (Vtx `  <. V ,  E >. )  =  ( 1st `  <. V ,  E >. ) )
4 op1stg 6235 . 2  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  ( 1st `  <. V ,  E >. )  =  V )
53, 4eqtrd 2237 1  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  (Vtx `  <. V ,  E >. )  =  V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175   _Vcvv 2771   <.cop 3635    X. cxp 4672   ` cfv 5270   1stc1st 6223  Vtxcvtx 15553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fo 5276  df-fv 5278  df-1st 6225  df-inn 9036  df-ndx 12777  df-slot 12778  df-base 12780  df-vtx 15555
This theorem is referenced by:  opvtxov  15562  opvtxfvi  15566  gropd  15586
  Copyright terms: Public domain W3C validator