ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gropd Unicode version

Theorem gropd 15586
Description: If any representation of a graph with vertices  V and edges  E has a certain property  ps, then the ordered pair  <. V ,  E >. of the set of vertices and the set of edges (which is such a representation of a graph with vertices  V and edges  E) has this property. (Contributed by AV, 11-Oct-2020.)
Hypotheses
Ref Expression
gropd.g  |-  ( ph  ->  A. g ( ( (Vtx `  g )  =  V  /\  (iEdg `  g )  =  E )  ->  ps )
)
gropd.v  |-  ( ph  ->  V  e.  U )
gropd.e  |-  ( ph  ->  E  e.  W )
Assertion
Ref Expression
gropd  |-  ( ph  ->  [. <. V ,  E >.  /  g ]. ps )
Distinct variable groups:    g, E    g, V    ph, g
Allowed substitution hints:    ps( g)    U( g)    W( g)

Proof of Theorem gropd
StepHypRef Expression
1 gropd.v . . 3  |-  ( ph  ->  V  e.  U )
2 gropd.e . . 3  |-  ( ph  ->  E  e.  W )
3 opexg 4271 . . 3  |-  ( ( V  e.  U  /\  E  e.  W )  -> 
<. V ,  E >.  e. 
_V )
41, 2, 3syl2anc 411 . 2  |-  ( ph  -> 
<. V ,  E >.  e. 
_V )
5 gropd.g . 2  |-  ( ph  ->  A. g ( ( (Vtx `  g )  =  V  /\  (iEdg `  g )  =  E )  ->  ps )
)
6 opvtxfv 15561 . . . 4  |-  ( ( V  e.  U  /\  E  e.  W )  ->  (Vtx `  <. V ,  E >. )  =  V )
7 opiedgfv 15564 . . . 4  |-  ( ( V  e.  U  /\  E  e.  W )  ->  (iEdg `  <. V ,  E >. )  =  E )
86, 7jca 306 . . 3  |-  ( ( V  e.  U  /\  E  e.  W )  ->  ( (Vtx `  <. V ,  E >. )  =  V  /\  (iEdg ` 
<. V ,  E >. )  =  E ) )
91, 2, 8syl2anc 411 . 2  |-  ( ph  ->  ( (Vtx `  <. V ,  E >. )  =  V  /\  (iEdg ` 
<. V ,  E >. )  =  E ) )
10 nfcv 2347 . . 3  |-  F/_ g <. V ,  E >.
11 nfv 1550 . . . 4  |-  F/ g ( (Vtx `  <. V ,  E >. )  =  V  /\  (iEdg ` 
<. V ,  E >. )  =  E )
12 nfsbc1v 3016 . . . 4  |-  F/ g
[. <. V ,  E >.  /  g ]. ps
1311, 12nfim 1594 . . 3  |-  F/ g ( ( (Vtx `  <. V ,  E >. )  =  V  /\  (iEdg ` 
<. V ,  E >. )  =  E )  ->  [. <. V ,  E >.  /  g ]. ps )
14 fveqeq2 5584 . . . . 5  |-  ( g  =  <. V ,  E >.  ->  ( (Vtx `  g )  =  V  <-> 
(Vtx `  <. V ,  E >. )  =  V ) )
15 fveqeq2 5584 . . . . 5  |-  ( g  =  <. V ,  E >.  ->  ( (iEdg `  g )  =  E  <-> 
(iEdg `  <. V ,  E >. )  =  E ) )
1614, 15anbi12d 473 . . . 4  |-  ( g  =  <. V ,  E >.  ->  ( ( (Vtx
`  g )  =  V  /\  (iEdg `  g )  =  E )  <->  ( (Vtx `  <. V ,  E >. )  =  V  /\  (iEdg ` 
<. V ,  E >. )  =  E ) ) )
17 sbceq1a 3007 . . . 4  |-  ( g  =  <. V ,  E >.  ->  ( ps  <->  [. <. V ,  E >.  /  g ]. ps ) )
1816, 17imbi12d 234 . . 3  |-  ( g  =  <. V ,  E >.  ->  ( ( ( (Vtx `  g )  =  V  /\  (iEdg `  g )  =  E )  ->  ps )  <->  ( ( (Vtx `  <. V ,  E >. )  =  V  /\  (iEdg ` 
<. V ,  E >. )  =  E )  ->  [. <. V ,  E >.  /  g ]. ps ) ) )
1910, 13, 18spcgf 2854 . 2  |-  ( <. V ,  E >.  e. 
_V  ->  ( A. g
( ( (Vtx `  g )  =  V  /\  (iEdg `  g
)  =  E )  ->  ps )  -> 
( ( (Vtx `  <. V ,  E >. )  =  V  /\  (iEdg ` 
<. V ,  E >. )  =  E )  ->  [. <. V ,  E >.  /  g ]. ps ) ) )
204, 5, 9, 19syl3c 63 1  |-  ( ph  ->  [. <. V ,  E >.  /  g ]. ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1370    = wceq 1372    e. wcel 2175   _Vcvv 2771   [.wsbc 2997   <.cop 3635   ` cfv 5270  Vtxcvtx 15553  iEdgciedg 15554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fo 5276  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-sub 8244  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-7 9099  df-8 9100  df-9 9101  df-n0 9295  df-dec 9504  df-ndx 12777  df-slot 12778  df-base 12780  df-edgf 15546  df-vtx 15555  df-iedg 15556
This theorem is referenced by:  gropeld  15588
  Copyright terms: Public domain W3C validator