ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  upgrop Unicode version

Theorem upgrop 15889
Description: A pseudograph represented by an ordered pair. (Contributed by AV, 12-Dec-2021.)
Assertion
Ref Expression
upgrop  |-  ( G  e. UPGraph  ->  <. (Vtx `  G
) ,  (iEdg `  G ) >.  e. UPGraph )

Proof of Theorem upgrop
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . 3  |-  (Vtx `  G )  =  (Vtx
`  G )
2 eqid 2229 . . 3  |-  (iEdg `  G )  =  (iEdg `  G )
31, 2upgrfen 15882 . 2  |-  ( G  e. UPGraph  ->  (iEdg `  G
) : dom  (iEdg `  G ) --> { p  e.  ~P (Vtx `  G
)  |  ( p 
~~  1o  \/  p  ~~  2o ) } )
4 vtxex 15804 . . . . 5  |-  ( G  e. UPGraph  ->  (Vtx `  G
)  e.  _V )
5 iedgex 15805 . . . . 5  |-  ( G  e. UPGraph  ->  (iEdg `  G
)  e.  _V )
6 opexg 4313 . . . . 5  |-  ( ( (Vtx `  G )  e.  _V  /\  (iEdg `  G )  e.  _V )  ->  <. (Vtx `  G
) ,  (iEdg `  G ) >.  e.  _V )
74, 5, 6syl2anc 411 . . . 4  |-  ( G  e. UPGraph  ->  <. (Vtx `  G
) ,  (iEdg `  G ) >.  e.  _V )
8 eqid 2229 . . . . 5  |-  (Vtx `  <. (Vtx `  G ) ,  (iEdg `  G ) >. )  =  (Vtx `  <. (Vtx `  G ) ,  (iEdg `  G ) >. )
9 eqid 2229 . . . . 5  |-  (iEdg `  <. (Vtx `  G ) ,  (iEdg `  G ) >. )  =  (iEdg `  <. (Vtx `  G ) ,  (iEdg `  G ) >. )
108, 9isupgren 15880 . . . 4  |-  ( <.
(Vtx `  G ) ,  (iEdg `  G ) >.  e.  _V  ->  ( <. (Vtx `  G ) ,  (iEdg `  G ) >.  e. UPGraph 
<->  (iEdg `  <. (Vtx `  G ) ,  (iEdg `  G ) >. ) : dom  (iEdg `  <. (Vtx
`  G ) ,  (iEdg `  G ) >. ) --> { p  e. 
~P (Vtx `  <. (Vtx
`  G ) ,  (iEdg `  G ) >. )  |  ( p 
~~  1o  \/  p  ~~  2o ) } ) )
117, 10syl 14 . . 3  |-  ( G  e. UPGraph  ->  ( <. (Vtx `  G ) ,  (iEdg `  G ) >.  e. UPGraph  <->  (iEdg `  <. (Vtx
`  G ) ,  (iEdg `  G ) >. ) : dom  (iEdg ` 
<. (Vtx `  G ) ,  (iEdg `  G ) >. ) --> { p  e. 
~P (Vtx `  <. (Vtx
`  G ) ,  (iEdg `  G ) >. )  |  ( p 
~~  1o  \/  p  ~~  2o ) } ) )
12 opiedgfv 15811 . . . . 5  |-  ( ( (Vtx `  G )  e.  _V  /\  (iEdg `  G )  e.  _V )  ->  (iEdg `  <. (Vtx
`  G ) ,  (iEdg `  G ) >. )  =  (iEdg `  G ) )
134, 5, 12syl2anc 411 . . . 4  |-  ( G  e. UPGraph  ->  (iEdg `  <. (Vtx
`  G ) ,  (iEdg `  G ) >. )  =  (iEdg `  G ) )
1413dmeqd 4922 . . . 4  |-  ( G  e. UPGraph  ->  dom  (iEdg `  <. (Vtx
`  G ) ,  (iEdg `  G ) >. )  =  dom  (iEdg `  G ) )
15 opvtxfv 15808 . . . . . . 7  |-  ( ( (Vtx `  G )  e.  _V  /\  (iEdg `  G )  e.  _V )  ->  (Vtx `  <. (Vtx
`  G ) ,  (iEdg `  G ) >. )  =  (Vtx `  G ) )
164, 5, 15syl2anc 411 . . . . . 6  |-  ( G  e. UPGraph  ->  (Vtx `  <. (Vtx
`  G ) ,  (iEdg `  G ) >. )  =  (Vtx `  G ) )
1716pweqd 3654 . . . . 5  |-  ( G  e. UPGraph  ->  ~P (Vtx `  <. (Vtx `  G ) ,  (iEdg `  G ) >. )  =  ~P (Vtx `  G ) )
1817rabeqdv 2793 . . . 4  |-  ( G  e. UPGraph  ->  { p  e. 
~P (Vtx `  <. (Vtx
`  G ) ,  (iEdg `  G ) >. )  |  ( p 
~~  1o  \/  p  ~~  2o ) }  =  { p  e.  ~P (Vtx `  G )  |  ( p  ~~  1o  \/  p  ~~  2o ) } )
1913, 14, 18feq123d 5460 . . 3  |-  ( G  e. UPGraph  ->  ( (iEdg `  <. (Vtx `  G ) ,  (iEdg `  G ) >. ) : dom  (iEdg ` 
<. (Vtx `  G ) ,  (iEdg `  G ) >. ) --> { p  e. 
~P (Vtx `  <. (Vtx
`  G ) ,  (iEdg `  G ) >. )  |  ( p 
~~  1o  \/  p  ~~  2o ) }  <->  (iEdg `  G
) : dom  (iEdg `  G ) --> { p  e.  ~P (Vtx `  G
)  |  ( p 
~~  1o  \/  p  ~~  2o ) } ) )
2011, 19bitrd 188 . 2  |-  ( G  e. UPGraph  ->  ( <. (Vtx `  G ) ,  (iEdg `  G ) >.  e. UPGraph  <->  (iEdg `  G
) : dom  (iEdg `  G ) --> { p  e.  ~P (Vtx `  G
)  |  ( p 
~~  1o  \/  p  ~~  2o ) } ) )
213, 20mpbird 167 1  |-  ( G  e. UPGraph  ->  <. (Vtx `  G
) ,  (iEdg `  G ) >.  e. UPGraph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200   {crab 2512   _Vcvv 2799   ~Pcpw 3649   <.cop 3669   class class class wbr 4082   dom cdm 4716   -->wf 5310   ` cfv 5314   1oc1o 6545   2oc2o 6546    ~~ cen 6875  Vtxcvtx 15798  iEdgciedg 15799  UPGraphcupgr 15876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-fo 5320  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-sub 8307  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-7 9162  df-8 9163  df-9 9164  df-n0 9358  df-dec 9567  df-ndx 13021  df-slot 13022  df-base 13024  df-edgf 15791  df-vtx 15800  df-iedg 15801  df-upgren 15878
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator