ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  upgrop Unicode version

Theorem upgrop 15750
Description: A pseudograph represented by an ordered pair. (Contributed by AV, 12-Dec-2021.)
Assertion
Ref Expression
upgrop  |-  ( G  e. UPGraph  ->  <. (Vtx `  G
) ,  (iEdg `  G ) >.  e. UPGraph )

Proof of Theorem upgrop
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . . 3  |-  (Vtx `  G )  =  (Vtx
`  G )
2 eqid 2206 . . 3  |-  (iEdg `  G )  =  (iEdg `  G )
31, 2upgrfen 15743 . 2  |-  ( G  e. UPGraph  ->  (iEdg `  G
) : dom  (iEdg `  G ) --> { p  e.  ~P (Vtx `  G
)  |  ( p 
~~  1o  \/  p  ~~  2o ) } )
4 vtxex 15667 . . . . 5  |-  ( G  e. UPGraph  ->  (Vtx `  G
)  e.  _V )
5 iedgex 15668 . . . . 5  |-  ( G  e. UPGraph  ->  (iEdg `  G
)  e.  _V )
6 opexg 4277 . . . . 5  |-  ( ( (Vtx `  G )  e.  _V  /\  (iEdg `  G )  e.  _V )  ->  <. (Vtx `  G
) ,  (iEdg `  G ) >.  e.  _V )
74, 5, 6syl2anc 411 . . . 4  |-  ( G  e. UPGraph  ->  <. (Vtx `  G
) ,  (iEdg `  G ) >.  e.  _V )
8 eqid 2206 . . . . 5  |-  (Vtx `  <. (Vtx `  G ) ,  (iEdg `  G ) >. )  =  (Vtx `  <. (Vtx `  G ) ,  (iEdg `  G ) >. )
9 eqid 2206 . . . . 5  |-  (iEdg `  <. (Vtx `  G ) ,  (iEdg `  G ) >. )  =  (iEdg `  <. (Vtx `  G ) ,  (iEdg `  G ) >. )
108, 9isupgren 15741 . . . 4  |-  ( <.
(Vtx `  G ) ,  (iEdg `  G ) >.  e.  _V  ->  ( <. (Vtx `  G ) ,  (iEdg `  G ) >.  e. UPGraph 
<->  (iEdg `  <. (Vtx `  G ) ,  (iEdg `  G ) >. ) : dom  (iEdg `  <. (Vtx
`  G ) ,  (iEdg `  G ) >. ) --> { p  e. 
~P (Vtx `  <. (Vtx
`  G ) ,  (iEdg `  G ) >. )  |  ( p 
~~  1o  \/  p  ~~  2o ) } ) )
117, 10syl 14 . . 3  |-  ( G  e. UPGraph  ->  ( <. (Vtx `  G ) ,  (iEdg `  G ) >.  e. UPGraph  <->  (iEdg `  <. (Vtx
`  G ) ,  (iEdg `  G ) >. ) : dom  (iEdg ` 
<. (Vtx `  G ) ,  (iEdg `  G ) >. ) --> { p  e. 
~P (Vtx `  <. (Vtx
`  G ) ,  (iEdg `  G ) >. )  |  ( p 
~~  1o  \/  p  ~~  2o ) } ) )
12 opiedgfv 15674 . . . . 5  |-  ( ( (Vtx `  G )  e.  _V  /\  (iEdg `  G )  e.  _V )  ->  (iEdg `  <. (Vtx
`  G ) ,  (iEdg `  G ) >. )  =  (iEdg `  G ) )
134, 5, 12syl2anc 411 . . . 4  |-  ( G  e. UPGraph  ->  (iEdg `  <. (Vtx
`  G ) ,  (iEdg `  G ) >. )  =  (iEdg `  G ) )
1413dmeqd 4886 . . . 4  |-  ( G  e. UPGraph  ->  dom  (iEdg `  <. (Vtx
`  G ) ,  (iEdg `  G ) >. )  =  dom  (iEdg `  G ) )
15 opvtxfv 15671 . . . . . . 7  |-  ( ( (Vtx `  G )  e.  _V  /\  (iEdg `  G )  e.  _V )  ->  (Vtx `  <. (Vtx
`  G ) ,  (iEdg `  G ) >. )  =  (Vtx `  G ) )
164, 5, 15syl2anc 411 . . . . . 6  |-  ( G  e. UPGraph  ->  (Vtx `  <. (Vtx
`  G ) ,  (iEdg `  G ) >. )  =  (Vtx `  G ) )
1716pweqd 3623 . . . . 5  |-  ( G  e. UPGraph  ->  ~P (Vtx `  <. (Vtx `  G ) ,  (iEdg `  G ) >. )  =  ~P (Vtx `  G ) )
1817rabeqdv 2767 . . . 4  |-  ( G  e. UPGraph  ->  { p  e. 
~P (Vtx `  <. (Vtx
`  G ) ,  (iEdg `  G ) >. )  |  ( p 
~~  1o  \/  p  ~~  2o ) }  =  { p  e.  ~P (Vtx `  G )  |  ( p  ~~  1o  \/  p  ~~  2o ) } )
1913, 14, 18feq123d 5423 . . 3  |-  ( G  e. UPGraph  ->  ( (iEdg `  <. (Vtx `  G ) ,  (iEdg `  G ) >. ) : dom  (iEdg ` 
<. (Vtx `  G ) ,  (iEdg `  G ) >. ) --> { p  e. 
~P (Vtx `  <. (Vtx
`  G ) ,  (iEdg `  G ) >. )  |  ( p 
~~  1o  \/  p  ~~  2o ) }  <->  (iEdg `  G
) : dom  (iEdg `  G ) --> { p  e.  ~P (Vtx `  G
)  |  ( p 
~~  1o  \/  p  ~~  2o ) } ) )
2011, 19bitrd 188 . 2  |-  ( G  e. UPGraph  ->  ( <. (Vtx `  G ) ,  (iEdg `  G ) >.  e. UPGraph  <->  (iEdg `  G
) : dom  (iEdg `  G ) --> { p  e.  ~P (Vtx `  G
)  |  ( p 
~~  1o  \/  p  ~~  2o ) } ) )
213, 20mpbird 167 1  |-  ( G  e. UPGraph  ->  <. (Vtx `  G
) ,  (iEdg `  G ) >.  e. UPGraph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2177   {crab 2489   _Vcvv 2773   ~Pcpw 3618   <.cop 3638   class class class wbr 4048   dom cdm 4680   -->wf 5273   ` cfv 5277   1oc1o 6505   2oc2o 6506    ~~ cen 6835  Vtxcvtx 15661  iEdgciedg 15662  UPGraphcupgr 15737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-cnre 8049
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-fo 5283  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-sub 8258  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-5 9111  df-6 9112  df-7 9113  df-8 9114  df-9 9115  df-n0 9309  df-dec 9518  df-ndx 12885  df-slot 12886  df-base 12888  df-edgf 15654  df-vtx 15663  df-iedg 15664  df-upgren 15739
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator