ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uhgrunop Unicode version

Theorem uhgrunop 15727
Description: The union of two (undirected) hypergraphs (with the same vertex set) represented as ordered pair: If  <. V ,  E >. and  <. V ,  F >. are hypergraphs, then  <. V ,  E  u.  F >. is a hypergraph (the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices). (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
uhgrun.g  |-  ( ph  ->  G  e. UHGraph )
uhgrun.h  |-  ( ph  ->  H  e. UHGraph )
uhgrun.e  |-  E  =  (iEdg `  G )
uhgrun.f  |-  F  =  (iEdg `  H )
uhgrun.vg  |-  V  =  (Vtx `  G )
uhgrun.vh  |-  ( ph  ->  (Vtx `  H )  =  V )
uhgrun.i  |-  ( ph  ->  ( dom  E  i^i  dom 
F )  =  (/) )
Assertion
Ref Expression
uhgrunop  |-  ( ph  -> 
<. V ,  ( E  u.  F ) >.  e. UHGraph )

Proof of Theorem uhgrunop
StepHypRef Expression
1 uhgrun.g . 2  |-  ( ph  ->  G  e. UHGraph )
2 uhgrun.h . 2  |-  ( ph  ->  H  e. UHGraph )
3 uhgrun.e . 2  |-  E  =  (iEdg `  G )
4 uhgrun.f . 2  |-  F  =  (iEdg `  H )
5 uhgrun.vg . 2  |-  V  =  (Vtx `  G )
6 uhgrun.vh . 2  |-  ( ph  ->  (Vtx `  H )  =  V )
7 uhgrun.i . 2  |-  ( ph  ->  ( dom  E  i^i  dom 
F )  =  (/) )
8 vtxex 15661 . . . . 5  |-  ( G  e. UHGraph  ->  (Vtx `  G
)  e.  _V )
91, 8syl 14 . . . 4  |-  ( ph  ->  (Vtx `  G )  e.  _V )
105, 9eqeltrid 2293 . . 3  |-  ( ph  ->  V  e.  _V )
11 iedgex 15662 . . . . . 6  |-  ( G  e. UHGraph  ->  (iEdg `  G
)  e.  _V )
121, 11syl 14 . . . . 5  |-  ( ph  ->  (iEdg `  G )  e.  _V )
133, 12eqeltrid 2293 . . . 4  |-  ( ph  ->  E  e.  _V )
14 iedgex 15662 . . . . . 6  |-  ( H  e. UHGraph  ->  (iEdg `  H
)  e.  _V )
152, 14syl 14 . . . . 5  |-  ( ph  ->  (iEdg `  H )  e.  _V )
164, 15eqeltrid 2293 . . . 4  |-  ( ph  ->  F  e.  _V )
17 unexg 4494 . . . 4  |-  ( ( E  e.  _V  /\  F  e.  _V )  ->  ( E  u.  F
)  e.  _V )
1813, 16, 17syl2anc 411 . . 3  |-  ( ph  ->  ( E  u.  F
)  e.  _V )
19 opexg 4276 . . 3  |-  ( ( V  e.  _V  /\  ( E  u.  F
)  e.  _V )  -> 
<. V ,  ( E  u.  F ) >.  e.  _V )
2010, 18, 19syl2anc 411 . 2  |-  ( ph  -> 
<. V ,  ( E  u.  F ) >.  e.  _V )
21 opvtxfv 15665 . . 3  |-  ( ( V  e.  _V  /\  ( E  u.  F
)  e.  _V )  ->  (Vtx `  <. V , 
( E  u.  F
) >. )  =  V )
2210, 18, 21syl2anc 411 . 2  |-  ( ph  ->  (Vtx `  <. V , 
( E  u.  F
) >. )  =  V )
23 opiedgfv 15668 . . 3  |-  ( ( V  e.  _V  /\  ( E  u.  F
)  e.  _V )  ->  (iEdg `  <. V , 
( E  u.  F
) >. )  =  ( E  u.  F ) )
2410, 18, 23syl2anc 411 . 2  |-  ( ph  ->  (iEdg `  <. V , 
( E  u.  F
) >. )  =  ( E  u.  F ) )
251, 2, 3, 4, 5, 6, 7, 20, 22, 24uhgrun 15726 1  |-  ( ph  -> 
<. V ,  ( E  u.  F ) >.  e. UHGraph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177   _Vcvv 2773    u. cun 3165    i^i cin 3166   (/)c0 3461   <.cop 3637   dom cdm 4679   ` cfv 5276  Vtxcvtx 15655  iEdgciedg 15656  UHGraphcuhgr 15707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fo 5282  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-sub 8252  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-9 9109  df-n0 9303  df-dec 9512  df-ndx 12879  df-slot 12880  df-base 12882  df-edgf 15648  df-vtx 15657  df-iedg 15658  df-uhgrm 15709
This theorem is referenced by:  ushgrunop  15729
  Copyright terms: Public domain W3C validator