ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reapcotr Unicode version

Theorem reapcotr 8670
Description: Real apartness is cotransitive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.)
Assertion
Ref Expression
reapcotr  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A #  B  ->  ( A #  C  \/  B #  C
) ) )

Proof of Theorem reapcotr
StepHypRef Expression
1 reaplt 8660 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  ( A  <  B  \/  B  < 
A ) ) )
213adant3 1019 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A #  B  <->  ( A  < 
B  \/  B  < 
A ) ) )
3 axltwlin 8139 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  ->  ( A  <  C  \/  C  <  B ) ) )
4 axltwlin 8139 . . . . . 6  |-  ( ( B  e.  RR  /\  A  e.  RR  /\  C  e.  RR )  ->  ( B  <  A  ->  ( B  <  C  \/  C  <  A ) ) )
543com12 1209 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  <  A  ->  ( B  <  C  \/  C  <  A ) ) )
63, 5orim12d 787 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  \/  B  <  A )  ->  ( ( A  <  C  \/  C  <  B )  \/  ( B  <  C  \/  C  <  A ) ) ) )
72, 6sylbid 150 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A #  B  ->  ( ( A  <  C  \/  C  <  B )  \/  ( B  <  C  \/  C  <  A ) ) ) )
8 orcom 729 . . . . 5  |-  ( ( B  <  C  \/  C  <  A )  <->  ( C  <  A  \/  B  < 
C ) )
98orbi2i 763 . . . 4  |-  ( ( ( A  <  C  \/  C  <  B )  \/  ( B  < 
C  \/  C  < 
A ) )  <->  ( ( A  <  C  \/  C  <  B )  \/  ( C  <  A  \/  B  <  C ) ) )
10 or42 773 . . . 4  |-  ( ( ( A  <  C  \/  C  <  B )  \/  ( C  < 
A  \/  B  < 
C ) )  <->  ( ( A  <  C  \/  C  <  A )  \/  ( B  <  C  \/  C  <  B ) ) )
119, 10bitri 184 . . 3  |-  ( ( ( A  <  C  \/  C  <  B )  \/  ( B  < 
C  \/  C  < 
A ) )  <->  ( ( A  <  C  \/  C  <  A )  \/  ( B  <  C  \/  C  <  B ) ) )
127, 11imbitrdi 161 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A #  B  ->  ( ( A  <  C  \/  C  <  A )  \/  ( B  <  C  \/  C  <  B ) ) ) )
13 reaplt 8660 . . . 4  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A #  C  <->  ( A  <  C  \/  C  < 
A ) ) )
14133adant2 1018 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A #  C  <->  ( A  < 
C  \/  C  < 
A ) ) )
15 reaplt 8660 . . . 4  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B #  C  <->  ( B  <  C  \/  C  < 
B ) ) )
16153adant1 1017 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B #  C  <->  ( B  < 
C  \/  C  < 
B ) ) )
1714, 16orbi12d 794 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A #  C  \/  B #  C )  <->  ( ( A  <  C  \/  C  <  A )  \/  ( B  <  C  \/  C  <  B ) ) ) )
1812, 17sylibrd 169 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A #  B  ->  ( A #  C  \/  B #  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 709    /\ w3a 980    e. wcel 2175   class class class wbr 4043   RRcr 7923    < clt 8106   # cap 8653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654
This theorem is referenced by:  apcotr  8679
  Copyright terms: Public domain W3C validator