ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reapcotr Unicode version

Theorem reapcotr 8619
Description: Real apartness is cotransitive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.)
Assertion
Ref Expression
reapcotr  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A #  B  ->  ( A #  C  \/  B #  C
) ) )

Proof of Theorem reapcotr
StepHypRef Expression
1 reaplt 8609 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  ( A  <  B  \/  B  < 
A ) ) )
213adant3 1019 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A #  B  <->  ( A  < 
B  \/  B  < 
A ) ) )
3 axltwlin 8089 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  ->  ( A  <  C  \/  C  <  B ) ) )
4 axltwlin 8089 . . . . . 6  |-  ( ( B  e.  RR  /\  A  e.  RR  /\  C  e.  RR )  ->  ( B  <  A  ->  ( B  <  C  \/  C  <  A ) ) )
543com12 1209 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  <  A  ->  ( B  <  C  \/  C  <  A ) ) )
63, 5orim12d 787 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  \/  B  <  A )  ->  ( ( A  <  C  \/  C  <  B )  \/  ( B  <  C  \/  C  <  A ) ) ) )
72, 6sylbid 150 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A #  B  ->  ( ( A  <  C  \/  C  <  B )  \/  ( B  <  C  \/  C  <  A ) ) ) )
8 orcom 729 . . . . 5  |-  ( ( B  <  C  \/  C  <  A )  <->  ( C  <  A  \/  B  < 
C ) )
98orbi2i 763 . . . 4  |-  ( ( ( A  <  C  \/  C  <  B )  \/  ( B  < 
C  \/  C  < 
A ) )  <->  ( ( A  <  C  \/  C  <  B )  \/  ( C  <  A  \/  B  <  C ) ) )
10 or42 773 . . . 4  |-  ( ( ( A  <  C  \/  C  <  B )  \/  ( C  < 
A  \/  B  < 
C ) )  <->  ( ( A  <  C  \/  C  <  A )  \/  ( B  <  C  \/  C  <  B ) ) )
119, 10bitri 184 . . 3  |-  ( ( ( A  <  C  \/  C  <  B )  \/  ( B  < 
C  \/  C  < 
A ) )  <->  ( ( A  <  C  \/  C  <  A )  \/  ( B  <  C  \/  C  <  B ) ) )
127, 11imbitrdi 161 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A #  B  ->  ( ( A  <  C  \/  C  <  A )  \/  ( B  <  C  \/  C  <  B ) ) ) )
13 reaplt 8609 . . . 4  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A #  C  <->  ( A  <  C  \/  C  < 
A ) ) )
14133adant2 1018 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A #  C  <->  ( A  < 
C  \/  C  < 
A ) ) )
15 reaplt 8609 . . . 4  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B #  C  <->  ( B  <  C  \/  C  < 
B ) ) )
16153adant1 1017 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B #  C  <->  ( B  < 
C  \/  C  < 
B ) ) )
1714, 16orbi12d 794 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A #  C  \/  B #  C )  <->  ( ( A  <  C  \/  C  <  A )  \/  ( B  <  C  \/  C  <  B ) ) ) )
1812, 17sylibrd 169 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A #  B  ->  ( A #  C  \/  B #  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 709    /\ w3a 980    e. wcel 2164   class class class wbr 4030   RRcr 7873    < clt 8056   # cap 8602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603
This theorem is referenced by:  apcotr  8628
  Copyright terms: Public domain W3C validator