ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgcddvds Unicode version

Theorem mulgcddvds 11615
Description: One half of rpmulgcd2 11616, which does not need the coprimality assumption. (Contributed by Mario Carneiro, 2-Jul-2015.)
Assertion
Ref Expression
mulgcddvds  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( ( K  gcd  M )  x.  ( K  gcd  N ) ) )

Proof of Theorem mulgcddvds
StepHypRef Expression
1 simp1 962 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  e.  ZZ )
2 simp2 963 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  ZZ )
3 simp3 964 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
42, 3zmulcld 9077 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N )  e.  ZZ )
51, 4gcdcld 11499 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  e. 
NN0 )
65nn0zd 9069 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  e.  ZZ )
7 dvds0 11350 . . . . 5  |-  ( ( K  gcd  ( M  x.  N ) )  e.  ZZ  ->  ( K  gcd  ( M  x.  N ) )  ||  0 )
86, 7syl 14 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  0 )
98adantr 272 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =  0 )  ->  ( K  gcd  ( M  x.  N
) )  ||  0
)
10 oveq2 5734 . . . 4  |-  ( ( K  gcd  N )  =  0  ->  (
( K  gcd  M
)  x.  ( K  gcd  N ) )  =  ( ( K  gcd  M )  x.  0 ) )
111, 2gcdcld 11499 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  M )  e. 
NN0 )
1211nn0cnd 8930 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  M )  e.  CC )
1312mul01d 8068 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  M
)  x.  0 )  =  0 )
1410, 13sylan9eqr 2167 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =  0 )  ->  ( ( K  gcd  M )  x.  ( K  gcd  N
) )  =  0 )
159, 14breqtrrd 3919 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =  0 )  ->  ( K  gcd  ( M  x.  N
) )  ||  (
( K  gcd  M
)  x.  ( K  gcd  N ) ) )
166adantr 272 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  ( M  x.  N
) )  e.  ZZ )
1716zcnd 9072 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  ( M  x.  N
) )  e.  CC )
181, 3gcdcld 11499 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  e. 
NN0 )
1918nn0zd 9069 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  e.  ZZ )
2019adantr 272 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  N )  e.  ZZ )
2120zcnd 9072 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  N )  e.  CC )
22 0zd 8964 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  0  e.  ZZ )
23 zapne 9023 . . . . . 6  |-  ( ( ( K  gcd  N
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( K  gcd  N ) #  0  <->  ( K  gcd  N )  =/=  0
) )
2419, 22, 23syl2anc 406 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  N
) #  0  <->  ( K  gcd  N )  =/=  0
) )
2524biimpar 293 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  N ) #  0 )
2617, 21, 25divcanap1d 8458 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( K  gcd  ( M  x.  N ) )  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) )  =  ( K  gcd  ( M  x.  N
) ) )
27 gcddvds 11494 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ )  ->  ( ( K  gcd  ( M  x.  N ) )  ||  K  /\  ( K  gcd  ( M  x.  N
) )  ||  ( M  x.  N )
) )
281, 4, 27syl2anc 406 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  ( M  x.  N )
)  ||  K  /\  ( K  gcd  ( M  x.  N ) ) 
||  ( M  x.  N ) ) )
2928simpld 111 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  K )
306, 1, 19, 29dvdsmultr1d 11374 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( K  x.  ( K  gcd  N ) ) )
3130adantr 272 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  ( M  x.  N
) )  ||  ( K  x.  ( K  gcd  N ) ) )
3226, 31eqbrtrd 3913 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( K  gcd  ( M  x.  N ) )  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) ) 
||  ( K  x.  ( K  gcd  N ) ) )
33 gcddvds 11494 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  gcd  N )  ||  K  /\  ( K  gcd  N ) 
||  N ) )
341, 3, 33syl2anc 406 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  N
)  ||  K  /\  ( K  gcd  N ) 
||  N ) )
3534simpld 111 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  ||  K )
3634simprd 113 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  ||  N )
37 dvdsmultr2 11375 . . . . . . . . . . . 12  |-  ( ( ( K  gcd  N
)  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  N
)  ||  N  ->  ( K  gcd  N ) 
||  ( M  x.  N ) ) )
3819, 2, 3, 37syl3anc 1197 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  N
)  ||  N  ->  ( K  gcd  N ) 
||  ( M  x.  N ) ) )
3936, 38mpd 13 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  ||  ( M  x.  N
) )
40 dvdsgcd 11540 . . . . . . . . . . 11  |-  ( ( ( K  gcd  N
)  e.  ZZ  /\  K  e.  ZZ  /\  ( M  x.  N )  e.  ZZ )  ->  (
( ( K  gcd  N )  ||  K  /\  ( K  gcd  N ) 
||  ( M  x.  N ) )  -> 
( K  gcd  N
)  ||  ( K  gcd  ( M  x.  N
) ) ) )
4119, 1, 4, 40syl3anc 1197 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  gcd  N )  ||  K  /\  ( K  gcd  N ) 
||  ( M  x.  N ) )  -> 
( K  gcd  N
)  ||  ( K  gcd  ( M  x.  N
) ) ) )
4235, 39, 41mp2and 427 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  ||  ( K  gcd  ( M  x.  N ) ) )
4342adantr 272 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  N )  ||  ( K  gcd  ( M  x.  N ) ) )
44 simpr 109 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  N )  =/=  0 )
45 dvdsval2 11338 . . . . . . . . 9  |-  ( ( ( K  gcd  N
)  e.  ZZ  /\  ( K  gcd  N )  =/=  0  /\  ( K  gcd  ( M  x.  N ) )  e.  ZZ )  ->  (
( K  gcd  N
)  ||  ( K  gcd  ( M  x.  N
) )  <->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  e.  ZZ ) )
4620, 44, 16, 45syl3anc 1197 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( K  gcd  N )  ||  ( K  gcd  ( M  x.  N ) )  <-> 
( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) )  e.  ZZ ) )
4743, 46mpbid 146 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  e.  ZZ )
481adantr 272 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  K  e.  ZZ )
49 dvdsmulcr 11365 . . . . . . 7  |-  ( ( ( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) )  e.  ZZ  /\  K  e.  ZZ  /\  ( ( K  gcd  N )  e.  ZZ  /\  ( K  gcd  N )  =/=  0 ) )  -> 
( ( ( ( K  gcd  ( M  x.  N ) )  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) ) 
||  ( K  x.  ( K  gcd  N ) )  <->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  K
) )
5047, 48, 20, 44, 49syl112anc 1201 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( ( K  gcd  ( M  x.  N )
)  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) )  ||  ( K  x.  ( K  gcd  N ) )  <->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  K
) )
5132, 50mpbid 146 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  K
)
52 nn0abscl 10743 . . . . . . . . . . . . . . 15  |-  ( M  e.  ZZ  ->  ( abs `  M )  e. 
NN0 )
532, 52syl 14 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  M )  e. 
NN0 )
5453nn0zd 9069 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  M )  e.  ZZ )
55 dvdsmultr2 11375 . . . . . . . . . . . . 13  |-  ( ( ( K  gcd  ( M  x.  N )
)  e.  ZZ  /\  ( abs `  M )  e.  ZZ  /\  K  e.  ZZ )  ->  (
( K  gcd  ( M  x.  N )
)  ||  K  ->  ( K  gcd  ( M  x.  N ) ) 
||  ( ( abs `  M )  x.  K
) ) )
566, 54, 1, 55syl3anc 1197 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  ( M  x.  N )
)  ||  K  ->  ( K  gcd  ( M  x.  N ) ) 
||  ( ( abs `  M )  x.  K
) ) )
5729, 56mpd 13 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( ( abs `  M
)  x.  K ) )
5828simprd 113 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( M  x.  N
) )
59 iddvds 11348 . . . . . . . . . . . . . . 15  |-  ( M  e.  ZZ  ->  M  ||  M )
602, 59syl 14 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  ||  M )
61 dvdsabsb 11354 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  ||  M  <->  M 
||  ( abs `  M
) ) )
622, 2, 61syl2anc 406 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  M  <->  M  ||  ( abs `  M ) ) )
6360, 62mpbid 146 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  ||  ( abs `  M
) )
64 dvdsmulc 11363 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ZZ  /\  ( abs `  M )  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( abs `  M
)  ->  ( M  x.  N )  ||  (
( abs `  M
)  x.  N ) ) )
652, 54, 3, 64syl3anc 1197 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( abs `  M
)  ->  ( M  x.  N )  ||  (
( abs `  M
)  x.  N ) ) )
6663, 65mpd 13 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N )  ||  ( ( abs `  M
)  x.  N ) )
6754, 3zmulcld 9077 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( abs `  M
)  x.  N )  e.  ZZ )
68 dvdstr 11372 . . . . . . . . . . . . 13  |-  ( ( ( K  gcd  ( M  x.  N )
)  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ  /\  ( ( abs `  M
)  x.  N )  e.  ZZ )  -> 
( ( ( K  gcd  ( M  x.  N ) )  ||  ( M  x.  N
)  /\  ( M  x.  N )  ||  (
( abs `  M
)  x.  N ) )  ->  ( K  gcd  ( M  x.  N
) )  ||  (
( abs `  M
)  x.  N ) ) )
696, 4, 67, 68syl3anc 1197 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  gcd  ( M  x.  N
) )  ||  ( M  x.  N )  /\  ( M  x.  N
)  ||  ( ( abs `  M )  x.  N ) )  -> 
( K  gcd  ( M  x.  N )
)  ||  ( ( abs `  M )  x.  N ) ) )
7058, 66, 69mp2and 427 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( ( abs `  M
)  x.  N ) )
7154, 1zmulcld 9077 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( abs `  M
)  x.  K )  e.  ZZ )
72 dvdsgcd 11540 . . . . . . . . . . . 12  |-  ( ( ( K  gcd  ( M  x.  N )
)  e.  ZZ  /\  ( ( abs `  M
)  x.  K )  e.  ZZ  /\  (
( abs `  M
)  x.  N )  e.  ZZ )  -> 
( ( ( K  gcd  ( M  x.  N ) )  ||  ( ( abs `  M
)  x.  K )  /\  ( K  gcd  ( M  x.  N
) )  ||  (
( abs `  M
)  x.  N ) )  ->  ( K  gcd  ( M  x.  N
) )  ||  (
( ( abs `  M
)  x.  K )  gcd  ( ( abs `  M )  x.  N
) ) ) )
736, 71, 67, 72syl3anc 1197 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  gcd  ( M  x.  N
) )  ||  (
( abs `  M
)  x.  K )  /\  ( K  gcd  ( M  x.  N
) )  ||  (
( abs `  M
)  x.  N ) )  ->  ( K  gcd  ( M  x.  N
) )  ||  (
( ( abs `  M
)  x.  K )  gcd  ( ( abs `  M )  x.  N
) ) ) )
7457, 70, 73mp2and 427 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( ( ( abs `  M )  x.  K
)  gcd  ( ( abs `  M )  x.  N ) ) )
7518nn0red 8929 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  e.  RR )
7618nn0ge0d 8931 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  0  <_  ( K  gcd  N
) )
7775, 76absidd 10825 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( K  gcd  N ) )  =  ( K  gcd  N ) )
7877oveq2d 5742 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( abs `  M
)  x.  ( abs `  ( K  gcd  N
) ) )  =  ( ( abs `  M
)  x.  ( K  gcd  N ) ) )
792zcnd 9072 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
8018nn0cnd 8930 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  e.  CC )
8179, 80absmuld 10852 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( M  x.  ( K  gcd  N ) ) )  =  ( ( abs `  M
)  x.  ( abs `  ( K  gcd  N
) ) ) )
82 mulgcd 11544 . . . . . . . . . . . 12  |-  ( ( ( abs `  M
)  e.  NN0  /\  K  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( abs `  M
)  x.  K )  gcd  ( ( abs `  M )  x.  N
) )  =  ( ( abs `  M
)  x.  ( K  gcd  N ) ) )
8353, 1, 3, 82syl3anc 1197 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( abs `  M
)  x.  K )  gcd  ( ( abs `  M )  x.  N
) )  =  ( ( abs `  M
)  x.  ( K  gcd  N ) ) )
8478, 81, 833eqtr4d 2155 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( M  x.  ( K  gcd  N ) ) )  =  ( ( ( abs `  M
)  x.  K )  gcd  ( ( abs `  M )  x.  N
) ) )
8574, 84breqtrrd 3919 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( abs `  ( M  x.  ( K  gcd  N ) ) ) )
862, 19zmulcld 9077 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  ( K  gcd  N ) )  e.  ZZ )
87 dvdsabsb 11354 . . . . . . . . . 10  |-  ( ( ( K  gcd  ( M  x.  N )
)  e.  ZZ  /\  ( M  x.  ( K  gcd  N ) )  e.  ZZ )  -> 
( ( K  gcd  ( M  x.  N
) )  ||  ( M  x.  ( K  gcd  N ) )  <->  ( K  gcd  ( M  x.  N
) )  ||  ( abs `  ( M  x.  ( K  gcd  N ) ) ) ) )
886, 86, 87syl2anc 406 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  ( M  x.  N )
)  ||  ( M  x.  ( K  gcd  N
) )  <->  ( K  gcd  ( M  x.  N
) )  ||  ( abs `  ( M  x.  ( K  gcd  N ) ) ) ) )
8985, 88mpbird 166 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( M  x.  ( K  gcd  N ) ) )
9089adantr 272 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  ( M  x.  N
) )  ||  ( M  x.  ( K  gcd  N ) ) )
9126, 90eqbrtrd 3913 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( K  gcd  ( M  x.  N ) )  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) ) 
||  ( M  x.  ( K  gcd  N ) ) )
922adantr 272 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  M  e.  ZZ )
93 dvdsmulcr 11365 . . . . . . 7  |-  ( ( ( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) )  e.  ZZ  /\  M  e.  ZZ  /\  ( ( K  gcd  N )  e.  ZZ  /\  ( K  gcd  N )  =/=  0 ) )  -> 
( ( ( ( K  gcd  ( M  x.  N ) )  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) ) 
||  ( M  x.  ( K  gcd  N ) )  <->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  M
) )
9447, 92, 20, 44, 93syl112anc 1201 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( ( K  gcd  ( M  x.  N )
)  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) )  ||  ( M  x.  ( K  gcd  N ) )  <->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  M
) )
9591, 94mpbid 146 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  M
)
96 dvdsgcd 11540 . . . . . 6  |-  ( ( ( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) )  e.  ZZ  /\  K  e.  ZZ  /\  M  e.  ZZ )  ->  (
( ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  K  /\  ( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) ) 
||  M )  -> 
( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) ) 
||  ( K  gcd  M ) ) )
9747, 48, 92, 96syl3anc 1197 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( ( K  gcd  ( M  x.  N )
)  /  ( K  gcd  N ) ) 
||  K  /\  (
( K  gcd  ( M  x.  N )
)  /  ( K  gcd  N ) ) 
||  M )  -> 
( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) ) 
||  ( K  gcd  M ) ) )
9851, 95, 97mp2and 427 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  ( K  gcd  M ) )
9911nn0zd 9069 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  M )  e.  ZZ )
10099adantr 272 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  M )  e.  ZZ )
101 dvdsmulc 11363 . . . . 5  |-  ( ( ( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) )  e.  ZZ  /\  ( K  gcd  M )  e.  ZZ  /\  ( K  gcd  N )  e.  ZZ )  ->  (
( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) ) 
||  ( K  gcd  M )  ->  ( (
( K  gcd  ( M  x.  N )
)  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) )  ||  (
( K  gcd  M
)  x.  ( K  gcd  N ) ) ) )
10247, 100, 20, 101syl3anc 1197 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( K  gcd  ( M  x.  N ) )  /  ( K  gcd  N ) )  ||  ( K  gcd  M )  -> 
( ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  x.  ( K  gcd  N ) ) 
||  ( ( K  gcd  M )  x.  ( K  gcd  N
) ) ) )
10398, 102mpd 13 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( K  gcd  ( M  x.  N ) )  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) ) 
||  ( ( K  gcd  M )  x.  ( K  gcd  N
) ) )
10426, 103eqbrtrrd 3915 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  ( M  x.  N
) )  ||  (
( K  gcd  M
)  x.  ( K  gcd  N ) ) )
105 zdceq 9024 . . . 4  |-  ( ( ( K  gcd  N
)  e.  ZZ  /\  0  e.  ZZ )  -> DECID  ( K  gcd  N )  =  0 )
10619, 22, 105syl2anc 406 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( K  gcd  N
)  =  0 )
107 exmiddc 804 . . . 4  |-  (DECID  ( K  gcd  N )  =  0  ->  ( ( K  gcd  N )  =  0  \/  -.  ( K  gcd  N )  =  0 ) )
108 df-ne 2281 . . . . 5  |-  ( ( K  gcd  N )  =/=  0  <->  -.  ( K  gcd  N )  =  0 )
109108orbi2i 734 . . . 4  |-  ( ( ( K  gcd  N
)  =  0  \/  ( K  gcd  N
)  =/=  0 )  <-> 
( ( K  gcd  N )  =  0  \/ 
-.  ( K  gcd  N )  =  0 ) )
110107, 109sylibr 133 . . 3  |-  (DECID  ( K  gcd  N )  =  0  ->  ( ( K  gcd  N )  =  0  \/  ( K  gcd  N )  =/=  0 ) )
111106, 110syl 14 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  N
)  =  0  \/  ( K  gcd  N
)  =/=  0 ) )
11215, 104, 111mpjaodan 770 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( ( K  gcd  M )  x.  ( K  gcd  N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 680  DECID wdc 802    /\ w3a 943    = wceq 1312    e. wcel 1461    =/= wne 2280   class class class wbr 3893   ` cfv 5079  (class class class)co 5726   0cc0 7541    x. cmul 7546   # cap 8255    / cdiv 8339   NN0cn0 8875   ZZcz 8952   abscabs 10655    || cdvds 11335    gcd cgcd 11477
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-iinf 4460  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-mulrcl 7638  ax-addcom 7639  ax-mulcom 7640  ax-addass 7641  ax-mulass 7642  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-1rid 7646  ax-0id 7647  ax-rnegex 7648  ax-precex 7649  ax-cnre 7650  ax-pre-ltirr 7651  ax-pre-ltwlin 7652  ax-pre-lttrn 7653  ax-pre-apti 7654  ax-pre-ltadd 7655  ax-pre-mulgt0 7656  ax-pre-mulext 7657  ax-arch 7658  ax-caucvg 7659
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rmo 2396  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-if 3439  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-id 4173  df-po 4176  df-iso 4177  df-iord 4246  df-on 4248  df-ilim 4249  df-suc 4251  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5990  df-2nd 5991  df-recs 6154  df-frec 6240  df-sup 6821  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724  df-sub 7852  df-neg 7853  df-reap 8249  df-ap 8256  df-div 8340  df-inn 8625  df-2 8683  df-3 8684  df-4 8685  df-n0 8876  df-z 8953  df-uz 9223  df-q 9308  df-rp 9338  df-fz 9678  df-fzo 9807  df-fl 9930  df-mod 9983  df-seqfrec 10106  df-exp 10180  df-cj 10501  df-re 10502  df-im 10503  df-rsqrt 10656  df-abs 10657  df-dvds 11336  df-gcd 11478
This theorem is referenced by:  rpmulgcd2  11616  rpmul  11619
  Copyright terms: Public domain W3C validator