ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgcddvds Unicode version

Theorem mulgcddvds 12232
Description: One half of rpmulgcd2 12233, which does not need the coprimality assumption. (Contributed by Mario Carneiro, 2-Jul-2015.)
Assertion
Ref Expression
mulgcddvds  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( ( K  gcd  M )  x.  ( K  gcd  N ) ) )

Proof of Theorem mulgcddvds
StepHypRef Expression
1 simp1 999 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  e.  ZZ )
2 simp2 1000 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  ZZ )
3 simp3 1001 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
42, 3zmulcld 9445 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N )  e.  ZZ )
51, 4gcdcld 12105 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  e. 
NN0 )
65nn0zd 9437 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  e.  ZZ )
7 dvds0 11949 . . . . 5  |-  ( ( K  gcd  ( M  x.  N ) )  e.  ZZ  ->  ( K  gcd  ( M  x.  N ) )  ||  0 )
86, 7syl 14 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  0 )
98adantr 276 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =  0 )  ->  ( K  gcd  ( M  x.  N
) )  ||  0
)
10 oveq2 5926 . . . 4  |-  ( ( K  gcd  N )  =  0  ->  (
( K  gcd  M
)  x.  ( K  gcd  N ) )  =  ( ( K  gcd  M )  x.  0 ) )
111, 2gcdcld 12105 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  M )  e. 
NN0 )
1211nn0cnd 9295 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  M )  e.  CC )
1312mul01d 8412 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  M
)  x.  0 )  =  0 )
1410, 13sylan9eqr 2248 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =  0 )  ->  ( ( K  gcd  M )  x.  ( K  gcd  N
) )  =  0 )
159, 14breqtrrd 4057 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =  0 )  ->  ( K  gcd  ( M  x.  N
) )  ||  (
( K  gcd  M
)  x.  ( K  gcd  N ) ) )
166adantr 276 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  ( M  x.  N
) )  e.  ZZ )
1716zcnd 9440 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  ( M  x.  N
) )  e.  CC )
181, 3gcdcld 12105 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  e. 
NN0 )
1918nn0zd 9437 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  e.  ZZ )
2019adantr 276 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  N )  e.  ZZ )
2120zcnd 9440 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  N )  e.  CC )
22 0zd 9329 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  0  e.  ZZ )
23 zapne 9391 . . . . . 6  |-  ( ( ( K  gcd  N
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( K  gcd  N ) #  0  <->  ( K  gcd  N )  =/=  0
) )
2419, 22, 23syl2anc 411 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  N
) #  0  <->  ( K  gcd  N )  =/=  0
) )
2524biimpar 297 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  N ) #  0 )
2617, 21, 25divcanap1d 8810 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( K  gcd  ( M  x.  N ) )  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) )  =  ( K  gcd  ( M  x.  N
) ) )
27 gcddvds 12100 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ )  ->  ( ( K  gcd  ( M  x.  N ) )  ||  K  /\  ( K  gcd  ( M  x.  N
) )  ||  ( M  x.  N )
) )
281, 4, 27syl2anc 411 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  ( M  x.  N )
)  ||  K  /\  ( K  gcd  ( M  x.  N ) ) 
||  ( M  x.  N ) ) )
2928simpld 112 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  K )
306, 1, 19, 29dvdsmultr1d 11975 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( K  x.  ( K  gcd  N ) ) )
3130adantr 276 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  ( M  x.  N
) )  ||  ( K  x.  ( K  gcd  N ) ) )
3226, 31eqbrtrd 4051 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( K  gcd  ( M  x.  N ) )  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) ) 
||  ( K  x.  ( K  gcd  N ) ) )
33 gcddvds 12100 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  gcd  N )  ||  K  /\  ( K  gcd  N ) 
||  N ) )
341, 3, 33syl2anc 411 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  N
)  ||  K  /\  ( K  gcd  N ) 
||  N ) )
3534simpld 112 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  ||  K )
3634simprd 114 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  ||  N )
37 dvdsmultr2 11976 . . . . . . . . . . . 12  |-  ( ( ( K  gcd  N
)  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  N
)  ||  N  ->  ( K  gcd  N ) 
||  ( M  x.  N ) ) )
3819, 2, 3, 37syl3anc 1249 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  N
)  ||  N  ->  ( K  gcd  N ) 
||  ( M  x.  N ) ) )
3936, 38mpd 13 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  ||  ( M  x.  N
) )
40 dvdsgcd 12149 . . . . . . . . . . 11  |-  ( ( ( K  gcd  N
)  e.  ZZ  /\  K  e.  ZZ  /\  ( M  x.  N )  e.  ZZ )  ->  (
( ( K  gcd  N )  ||  K  /\  ( K  gcd  N ) 
||  ( M  x.  N ) )  -> 
( K  gcd  N
)  ||  ( K  gcd  ( M  x.  N
) ) ) )
4119, 1, 4, 40syl3anc 1249 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  gcd  N )  ||  K  /\  ( K  gcd  N ) 
||  ( M  x.  N ) )  -> 
( K  gcd  N
)  ||  ( K  gcd  ( M  x.  N
) ) ) )
4235, 39, 41mp2and 433 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  ||  ( K  gcd  ( M  x.  N ) ) )
4342adantr 276 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  N )  ||  ( K  gcd  ( M  x.  N ) ) )
44 simpr 110 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  N )  =/=  0 )
45 dvdsval2 11933 . . . . . . . . 9  |-  ( ( ( K  gcd  N
)  e.  ZZ  /\  ( K  gcd  N )  =/=  0  /\  ( K  gcd  ( M  x.  N ) )  e.  ZZ )  ->  (
( K  gcd  N
)  ||  ( K  gcd  ( M  x.  N
) )  <->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  e.  ZZ ) )
4620, 44, 16, 45syl3anc 1249 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( K  gcd  N )  ||  ( K  gcd  ( M  x.  N ) )  <-> 
( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) )  e.  ZZ ) )
4743, 46mpbid 147 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  e.  ZZ )
481adantr 276 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  K  e.  ZZ )
49 dvdsmulcr 11964 . . . . . . 7  |-  ( ( ( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) )  e.  ZZ  /\  K  e.  ZZ  /\  ( ( K  gcd  N )  e.  ZZ  /\  ( K  gcd  N )  =/=  0 ) )  -> 
( ( ( ( K  gcd  ( M  x.  N ) )  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) ) 
||  ( K  x.  ( K  gcd  N ) )  <->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  K
) )
5047, 48, 20, 44, 49syl112anc 1253 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( ( K  gcd  ( M  x.  N )
)  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) )  ||  ( K  x.  ( K  gcd  N ) )  <->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  K
) )
5132, 50mpbid 147 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  K
)
52 nn0abscl 11229 . . . . . . . . . . . . . . 15  |-  ( M  e.  ZZ  ->  ( abs `  M )  e. 
NN0 )
532, 52syl 14 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  M )  e. 
NN0 )
5453nn0zd 9437 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  M )  e.  ZZ )
55 dvdsmultr2 11976 . . . . . . . . . . . . 13  |-  ( ( ( K  gcd  ( M  x.  N )
)  e.  ZZ  /\  ( abs `  M )  e.  ZZ  /\  K  e.  ZZ )  ->  (
( K  gcd  ( M  x.  N )
)  ||  K  ->  ( K  gcd  ( M  x.  N ) ) 
||  ( ( abs `  M )  x.  K
) ) )
566, 54, 1, 55syl3anc 1249 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  ( M  x.  N )
)  ||  K  ->  ( K  gcd  ( M  x.  N ) ) 
||  ( ( abs `  M )  x.  K
) ) )
5729, 56mpd 13 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( ( abs `  M
)  x.  K ) )
5828simprd 114 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( M  x.  N
) )
59 iddvds 11947 . . . . . . . . . . . . . . 15  |-  ( M  e.  ZZ  ->  M  ||  M )
602, 59syl 14 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  ||  M )
61 dvdsabsb 11953 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  ||  M  <->  M 
||  ( abs `  M
) ) )
622, 2, 61syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  M  <->  M  ||  ( abs `  M ) ) )
6360, 62mpbid 147 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  ||  ( abs `  M
) )
64 dvdsmulc 11962 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ZZ  /\  ( abs `  M )  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( abs `  M
)  ->  ( M  x.  N )  ||  (
( abs `  M
)  x.  N ) ) )
652, 54, 3, 64syl3anc 1249 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( abs `  M
)  ->  ( M  x.  N )  ||  (
( abs `  M
)  x.  N ) ) )
6663, 65mpd 13 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N )  ||  ( ( abs `  M
)  x.  N ) )
6754, 3zmulcld 9445 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( abs `  M
)  x.  N )  e.  ZZ )
68 dvdstr 11971 . . . . . . . . . . . . 13  |-  ( ( ( K  gcd  ( M  x.  N )
)  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ  /\  ( ( abs `  M
)  x.  N )  e.  ZZ )  -> 
( ( ( K  gcd  ( M  x.  N ) )  ||  ( M  x.  N
)  /\  ( M  x.  N )  ||  (
( abs `  M
)  x.  N ) )  ->  ( K  gcd  ( M  x.  N
) )  ||  (
( abs `  M
)  x.  N ) ) )
696, 4, 67, 68syl3anc 1249 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  gcd  ( M  x.  N
) )  ||  ( M  x.  N )  /\  ( M  x.  N
)  ||  ( ( abs `  M )  x.  N ) )  -> 
( K  gcd  ( M  x.  N )
)  ||  ( ( abs `  M )  x.  N ) ) )
7058, 66, 69mp2and 433 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( ( abs `  M
)  x.  N ) )
7154, 1zmulcld 9445 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( abs `  M
)  x.  K )  e.  ZZ )
72 dvdsgcd 12149 . . . . . . . . . . . 12  |-  ( ( ( K  gcd  ( M  x.  N )
)  e.  ZZ  /\  ( ( abs `  M
)  x.  K )  e.  ZZ  /\  (
( abs `  M
)  x.  N )  e.  ZZ )  -> 
( ( ( K  gcd  ( M  x.  N ) )  ||  ( ( abs `  M
)  x.  K )  /\  ( K  gcd  ( M  x.  N
) )  ||  (
( abs `  M
)  x.  N ) )  ->  ( K  gcd  ( M  x.  N
) )  ||  (
( ( abs `  M
)  x.  K )  gcd  ( ( abs `  M )  x.  N
) ) ) )
736, 71, 67, 72syl3anc 1249 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  gcd  ( M  x.  N
) )  ||  (
( abs `  M
)  x.  K )  /\  ( K  gcd  ( M  x.  N
) )  ||  (
( abs `  M
)  x.  N ) )  ->  ( K  gcd  ( M  x.  N
) )  ||  (
( ( abs `  M
)  x.  K )  gcd  ( ( abs `  M )  x.  N
) ) ) )
7457, 70, 73mp2and 433 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( ( ( abs `  M )  x.  K
)  gcd  ( ( abs `  M )  x.  N ) ) )
7518nn0red 9294 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  e.  RR )
7618nn0ge0d 9296 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  0  <_  ( K  gcd  N
) )
7775, 76absidd 11311 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( K  gcd  N ) )  =  ( K  gcd  N ) )
7877oveq2d 5934 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( abs `  M
)  x.  ( abs `  ( K  gcd  N
) ) )  =  ( ( abs `  M
)  x.  ( K  gcd  N ) ) )
792zcnd 9440 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
8018nn0cnd 9295 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  e.  CC )
8179, 80absmuld 11338 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( M  x.  ( K  gcd  N ) ) )  =  ( ( abs `  M
)  x.  ( abs `  ( K  gcd  N
) ) ) )
82 mulgcd 12153 . . . . . . . . . . . 12  |-  ( ( ( abs `  M
)  e.  NN0  /\  K  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( abs `  M
)  x.  K )  gcd  ( ( abs `  M )  x.  N
) )  =  ( ( abs `  M
)  x.  ( K  gcd  N ) ) )
8353, 1, 3, 82syl3anc 1249 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( abs `  M
)  x.  K )  gcd  ( ( abs `  M )  x.  N
) )  =  ( ( abs `  M
)  x.  ( K  gcd  N ) ) )
8478, 81, 833eqtr4d 2236 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( M  x.  ( K  gcd  N ) ) )  =  ( ( ( abs `  M
)  x.  K )  gcd  ( ( abs `  M )  x.  N
) ) )
8574, 84breqtrrd 4057 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( abs `  ( M  x.  ( K  gcd  N ) ) ) )
862, 19zmulcld 9445 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  ( K  gcd  N ) )  e.  ZZ )
87 dvdsabsb 11953 . . . . . . . . . 10  |-  ( ( ( K  gcd  ( M  x.  N )
)  e.  ZZ  /\  ( M  x.  ( K  gcd  N ) )  e.  ZZ )  -> 
( ( K  gcd  ( M  x.  N
) )  ||  ( M  x.  ( K  gcd  N ) )  <->  ( K  gcd  ( M  x.  N
) )  ||  ( abs `  ( M  x.  ( K  gcd  N ) ) ) ) )
886, 86, 87syl2anc 411 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  ( M  x.  N )
)  ||  ( M  x.  ( K  gcd  N
) )  <->  ( K  gcd  ( M  x.  N
) )  ||  ( abs `  ( M  x.  ( K  gcd  N ) ) ) ) )
8985, 88mpbird 167 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( M  x.  ( K  gcd  N ) ) )
9089adantr 276 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  ( M  x.  N
) )  ||  ( M  x.  ( K  gcd  N ) ) )
9126, 90eqbrtrd 4051 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( K  gcd  ( M  x.  N ) )  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) ) 
||  ( M  x.  ( K  gcd  N ) ) )
922adantr 276 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  M  e.  ZZ )
93 dvdsmulcr 11964 . . . . . . 7  |-  ( ( ( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) )  e.  ZZ  /\  M  e.  ZZ  /\  ( ( K  gcd  N )  e.  ZZ  /\  ( K  gcd  N )  =/=  0 ) )  -> 
( ( ( ( K  gcd  ( M  x.  N ) )  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) ) 
||  ( M  x.  ( K  gcd  N ) )  <->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  M
) )
9447, 92, 20, 44, 93syl112anc 1253 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( ( K  gcd  ( M  x.  N )
)  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) )  ||  ( M  x.  ( K  gcd  N ) )  <->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  M
) )
9591, 94mpbid 147 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  M
)
96 dvdsgcd 12149 . . . . . 6  |-  ( ( ( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) )  e.  ZZ  /\  K  e.  ZZ  /\  M  e.  ZZ )  ->  (
( ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  K  /\  ( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) ) 
||  M )  -> 
( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) ) 
||  ( K  gcd  M ) ) )
9747, 48, 92, 96syl3anc 1249 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( ( K  gcd  ( M  x.  N )
)  /  ( K  gcd  N ) ) 
||  K  /\  (
( K  gcd  ( M  x.  N )
)  /  ( K  gcd  N ) ) 
||  M )  -> 
( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) ) 
||  ( K  gcd  M ) ) )
9851, 95, 97mp2and 433 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  ( K  gcd  M ) )
9911nn0zd 9437 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  M )  e.  ZZ )
10099adantr 276 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  M )  e.  ZZ )
101 dvdsmulc 11962 . . . . 5  |-  ( ( ( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) )  e.  ZZ  /\  ( K  gcd  M )  e.  ZZ  /\  ( K  gcd  N )  e.  ZZ )  ->  (
( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) ) 
||  ( K  gcd  M )  ->  ( (
( K  gcd  ( M  x.  N )
)  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) )  ||  (
( K  gcd  M
)  x.  ( K  gcd  N ) ) ) )
10247, 100, 20, 101syl3anc 1249 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( K  gcd  ( M  x.  N ) )  /  ( K  gcd  N ) )  ||  ( K  gcd  M )  -> 
( ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  x.  ( K  gcd  N ) ) 
||  ( ( K  gcd  M )  x.  ( K  gcd  N
) ) ) )
10398, 102mpd 13 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( K  gcd  ( M  x.  N ) )  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) ) 
||  ( ( K  gcd  M )  x.  ( K  gcd  N
) ) )
10426, 103eqbrtrrd 4053 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  ( M  x.  N
) )  ||  (
( K  gcd  M
)  x.  ( K  gcd  N ) ) )
105 zdceq 9392 . . . 4  |-  ( ( ( K  gcd  N
)  e.  ZZ  /\  0  e.  ZZ )  -> DECID  ( K  gcd  N )  =  0 )
10619, 22, 105syl2anc 411 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( K  gcd  N
)  =  0 )
107 exmiddc 837 . . . 4  |-  (DECID  ( K  gcd  N )  =  0  ->  ( ( K  gcd  N )  =  0  \/  -.  ( K  gcd  N )  =  0 ) )
108 df-ne 2365 . . . . 5  |-  ( ( K  gcd  N )  =/=  0  <->  -.  ( K  gcd  N )  =  0 )
109108orbi2i 763 . . . 4  |-  ( ( ( K  gcd  N
)  =  0  \/  ( K  gcd  N
)  =/=  0 )  <-> 
( ( K  gcd  N )  =  0  \/ 
-.  ( K  gcd  N )  =  0 ) )
110107, 109sylibr 134 . . 3  |-  (DECID  ( K  gcd  N )  =  0  ->  ( ( K  gcd  N )  =  0  \/  ( K  gcd  N )  =/=  0 ) )
111106, 110syl 14 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  N
)  =  0  \/  ( K  gcd  N
)  =/=  0 ) )
11215, 104, 111mpjaodan 799 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( ( K  gcd  M )  x.  ( K  gcd  N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2164    =/= wne 2364   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   0cc0 7872    x. cmul 7877   # cap 8600    / cdiv 8691   NN0cn0 9240   ZZcz 9317   abscabs 11141    || cdvds 11930    gcd cgcd 12079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-sup 7043  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080
This theorem is referenced by:  rpmulgcd2  12233  rpmul  12236
  Copyright terms: Public domain W3C validator