ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgcddvds Unicode version

Theorem mulgcddvds 12026
Description: One half of rpmulgcd2 12027, which does not need the coprimality assumption. (Contributed by Mario Carneiro, 2-Jul-2015.)
Assertion
Ref Expression
mulgcddvds  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( ( K  gcd  M )  x.  ( K  gcd  N ) ) )

Proof of Theorem mulgcddvds
StepHypRef Expression
1 simp1 987 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  e.  ZZ )
2 simp2 988 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  ZZ )
3 simp3 989 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
42, 3zmulcld 9319 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N )  e.  ZZ )
51, 4gcdcld 11901 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  e. 
NN0 )
65nn0zd 9311 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  e.  ZZ )
7 dvds0 11746 . . . . 5  |-  ( ( K  gcd  ( M  x.  N ) )  e.  ZZ  ->  ( K  gcd  ( M  x.  N ) )  ||  0 )
86, 7syl 14 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  0 )
98adantr 274 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =  0 )  ->  ( K  gcd  ( M  x.  N
) )  ||  0
)
10 oveq2 5850 . . . 4  |-  ( ( K  gcd  N )  =  0  ->  (
( K  gcd  M
)  x.  ( K  gcd  N ) )  =  ( ( K  gcd  M )  x.  0 ) )
111, 2gcdcld 11901 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  M )  e. 
NN0 )
1211nn0cnd 9169 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  M )  e.  CC )
1312mul01d 8291 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  M
)  x.  0 )  =  0 )
1410, 13sylan9eqr 2221 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =  0 )  ->  ( ( K  gcd  M )  x.  ( K  gcd  N
) )  =  0 )
159, 14breqtrrd 4010 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =  0 )  ->  ( K  gcd  ( M  x.  N
) )  ||  (
( K  gcd  M
)  x.  ( K  gcd  N ) ) )
166adantr 274 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  ( M  x.  N
) )  e.  ZZ )
1716zcnd 9314 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  ( M  x.  N
) )  e.  CC )
181, 3gcdcld 11901 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  e. 
NN0 )
1918nn0zd 9311 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  e.  ZZ )
2019adantr 274 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  N )  e.  ZZ )
2120zcnd 9314 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  N )  e.  CC )
22 0zd 9203 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  0  e.  ZZ )
23 zapne 9265 . . . . . 6  |-  ( ( ( K  gcd  N
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( K  gcd  N ) #  0  <->  ( K  gcd  N )  =/=  0
) )
2419, 22, 23syl2anc 409 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  N
) #  0  <->  ( K  gcd  N )  =/=  0
) )
2524biimpar 295 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  N ) #  0 )
2617, 21, 25divcanap1d 8687 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( K  gcd  ( M  x.  N ) )  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) )  =  ( K  gcd  ( M  x.  N
) ) )
27 gcddvds 11896 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ )  ->  ( ( K  gcd  ( M  x.  N ) )  ||  K  /\  ( K  gcd  ( M  x.  N
) )  ||  ( M  x.  N )
) )
281, 4, 27syl2anc 409 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  ( M  x.  N )
)  ||  K  /\  ( K  gcd  ( M  x.  N ) ) 
||  ( M  x.  N ) ) )
2928simpld 111 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  K )
306, 1, 19, 29dvdsmultr1d 11772 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( K  x.  ( K  gcd  N ) ) )
3130adantr 274 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  ( M  x.  N
) )  ||  ( K  x.  ( K  gcd  N ) ) )
3226, 31eqbrtrd 4004 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( K  gcd  ( M  x.  N ) )  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) ) 
||  ( K  x.  ( K  gcd  N ) ) )
33 gcddvds 11896 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  gcd  N )  ||  K  /\  ( K  gcd  N ) 
||  N ) )
341, 3, 33syl2anc 409 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  N
)  ||  K  /\  ( K  gcd  N ) 
||  N ) )
3534simpld 111 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  ||  K )
3634simprd 113 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  ||  N )
37 dvdsmultr2 11773 . . . . . . . . . . . 12  |-  ( ( ( K  gcd  N
)  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  N
)  ||  N  ->  ( K  gcd  N ) 
||  ( M  x.  N ) ) )
3819, 2, 3, 37syl3anc 1228 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  N
)  ||  N  ->  ( K  gcd  N ) 
||  ( M  x.  N ) ) )
3936, 38mpd 13 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  ||  ( M  x.  N
) )
40 dvdsgcd 11945 . . . . . . . . . . 11  |-  ( ( ( K  gcd  N
)  e.  ZZ  /\  K  e.  ZZ  /\  ( M  x.  N )  e.  ZZ )  ->  (
( ( K  gcd  N )  ||  K  /\  ( K  gcd  N ) 
||  ( M  x.  N ) )  -> 
( K  gcd  N
)  ||  ( K  gcd  ( M  x.  N
) ) ) )
4119, 1, 4, 40syl3anc 1228 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  gcd  N )  ||  K  /\  ( K  gcd  N ) 
||  ( M  x.  N ) )  -> 
( K  gcd  N
)  ||  ( K  gcd  ( M  x.  N
) ) ) )
4235, 39, 41mp2and 430 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  ||  ( K  gcd  ( M  x.  N ) ) )
4342adantr 274 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  N )  ||  ( K  gcd  ( M  x.  N ) ) )
44 simpr 109 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  N )  =/=  0 )
45 dvdsval2 11730 . . . . . . . . 9  |-  ( ( ( K  gcd  N
)  e.  ZZ  /\  ( K  gcd  N )  =/=  0  /\  ( K  gcd  ( M  x.  N ) )  e.  ZZ )  ->  (
( K  gcd  N
)  ||  ( K  gcd  ( M  x.  N
) )  <->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  e.  ZZ ) )
4620, 44, 16, 45syl3anc 1228 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( K  gcd  N )  ||  ( K  gcd  ( M  x.  N ) )  <-> 
( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) )  e.  ZZ ) )
4743, 46mpbid 146 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  e.  ZZ )
481adantr 274 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  K  e.  ZZ )
49 dvdsmulcr 11761 . . . . . . 7  |-  ( ( ( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) )  e.  ZZ  /\  K  e.  ZZ  /\  ( ( K  gcd  N )  e.  ZZ  /\  ( K  gcd  N )  =/=  0 ) )  -> 
( ( ( ( K  gcd  ( M  x.  N ) )  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) ) 
||  ( K  x.  ( K  gcd  N ) )  <->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  K
) )
5047, 48, 20, 44, 49syl112anc 1232 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( ( K  gcd  ( M  x.  N )
)  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) )  ||  ( K  x.  ( K  gcd  N ) )  <->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  K
) )
5132, 50mpbid 146 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  K
)
52 nn0abscl 11027 . . . . . . . . . . . . . . 15  |-  ( M  e.  ZZ  ->  ( abs `  M )  e. 
NN0 )
532, 52syl 14 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  M )  e. 
NN0 )
5453nn0zd 9311 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  M )  e.  ZZ )
55 dvdsmultr2 11773 . . . . . . . . . . . . 13  |-  ( ( ( K  gcd  ( M  x.  N )
)  e.  ZZ  /\  ( abs `  M )  e.  ZZ  /\  K  e.  ZZ )  ->  (
( K  gcd  ( M  x.  N )
)  ||  K  ->  ( K  gcd  ( M  x.  N ) ) 
||  ( ( abs `  M )  x.  K
) ) )
566, 54, 1, 55syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  ( M  x.  N )
)  ||  K  ->  ( K  gcd  ( M  x.  N ) ) 
||  ( ( abs `  M )  x.  K
) ) )
5729, 56mpd 13 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( ( abs `  M
)  x.  K ) )
5828simprd 113 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( M  x.  N
) )
59 iddvds 11744 . . . . . . . . . . . . . . 15  |-  ( M  e.  ZZ  ->  M  ||  M )
602, 59syl 14 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  ||  M )
61 dvdsabsb 11750 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  ||  M  <->  M 
||  ( abs `  M
) ) )
622, 2, 61syl2anc 409 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  M  <->  M  ||  ( abs `  M ) ) )
6360, 62mpbid 146 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  ||  ( abs `  M
) )
64 dvdsmulc 11759 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ZZ  /\  ( abs `  M )  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( abs `  M
)  ->  ( M  x.  N )  ||  (
( abs `  M
)  x.  N ) ) )
652, 54, 3, 64syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( abs `  M
)  ->  ( M  x.  N )  ||  (
( abs `  M
)  x.  N ) ) )
6663, 65mpd 13 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N )  ||  ( ( abs `  M
)  x.  N ) )
6754, 3zmulcld 9319 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( abs `  M
)  x.  N )  e.  ZZ )
68 dvdstr 11768 . . . . . . . . . . . . 13  |-  ( ( ( K  gcd  ( M  x.  N )
)  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ  /\  ( ( abs `  M
)  x.  N )  e.  ZZ )  -> 
( ( ( K  gcd  ( M  x.  N ) )  ||  ( M  x.  N
)  /\  ( M  x.  N )  ||  (
( abs `  M
)  x.  N ) )  ->  ( K  gcd  ( M  x.  N
) )  ||  (
( abs `  M
)  x.  N ) ) )
696, 4, 67, 68syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  gcd  ( M  x.  N
) )  ||  ( M  x.  N )  /\  ( M  x.  N
)  ||  ( ( abs `  M )  x.  N ) )  -> 
( K  gcd  ( M  x.  N )
)  ||  ( ( abs `  M )  x.  N ) ) )
7058, 66, 69mp2and 430 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( ( abs `  M
)  x.  N ) )
7154, 1zmulcld 9319 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( abs `  M
)  x.  K )  e.  ZZ )
72 dvdsgcd 11945 . . . . . . . . . . . 12  |-  ( ( ( K  gcd  ( M  x.  N )
)  e.  ZZ  /\  ( ( abs `  M
)  x.  K )  e.  ZZ  /\  (
( abs `  M
)  x.  N )  e.  ZZ )  -> 
( ( ( K  gcd  ( M  x.  N ) )  ||  ( ( abs `  M
)  x.  K )  /\  ( K  gcd  ( M  x.  N
) )  ||  (
( abs `  M
)  x.  N ) )  ->  ( K  gcd  ( M  x.  N
) )  ||  (
( ( abs `  M
)  x.  K )  gcd  ( ( abs `  M )  x.  N
) ) ) )
736, 71, 67, 72syl3anc 1228 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  gcd  ( M  x.  N
) )  ||  (
( abs `  M
)  x.  K )  /\  ( K  gcd  ( M  x.  N
) )  ||  (
( abs `  M
)  x.  N ) )  ->  ( K  gcd  ( M  x.  N
) )  ||  (
( ( abs `  M
)  x.  K )  gcd  ( ( abs `  M )  x.  N
) ) ) )
7457, 70, 73mp2and 430 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( ( ( abs `  M )  x.  K
)  gcd  ( ( abs `  M )  x.  N ) ) )
7518nn0red 9168 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  e.  RR )
7618nn0ge0d 9170 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  0  <_  ( K  gcd  N
) )
7775, 76absidd 11109 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( K  gcd  N ) )  =  ( K  gcd  N ) )
7877oveq2d 5858 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( abs `  M
)  x.  ( abs `  ( K  gcd  N
) ) )  =  ( ( abs `  M
)  x.  ( K  gcd  N ) ) )
792zcnd 9314 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
8018nn0cnd 9169 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  e.  CC )
8179, 80absmuld 11136 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( M  x.  ( K  gcd  N ) ) )  =  ( ( abs `  M
)  x.  ( abs `  ( K  gcd  N
) ) ) )
82 mulgcd 11949 . . . . . . . . . . . 12  |-  ( ( ( abs `  M
)  e.  NN0  /\  K  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( abs `  M
)  x.  K )  gcd  ( ( abs `  M )  x.  N
) )  =  ( ( abs `  M
)  x.  ( K  gcd  N ) ) )
8353, 1, 3, 82syl3anc 1228 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( abs `  M
)  x.  K )  gcd  ( ( abs `  M )  x.  N
) )  =  ( ( abs `  M
)  x.  ( K  gcd  N ) ) )
8478, 81, 833eqtr4d 2208 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( M  x.  ( K  gcd  N ) ) )  =  ( ( ( abs `  M
)  x.  K )  gcd  ( ( abs `  M )  x.  N
) ) )
8574, 84breqtrrd 4010 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( abs `  ( M  x.  ( K  gcd  N ) ) ) )
862, 19zmulcld 9319 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  ( K  gcd  N ) )  e.  ZZ )
87 dvdsabsb 11750 . . . . . . . . . 10  |-  ( ( ( K  gcd  ( M  x.  N )
)  e.  ZZ  /\  ( M  x.  ( K  gcd  N ) )  e.  ZZ )  -> 
( ( K  gcd  ( M  x.  N
) )  ||  ( M  x.  ( K  gcd  N ) )  <->  ( K  gcd  ( M  x.  N
) )  ||  ( abs `  ( M  x.  ( K  gcd  N ) ) ) ) )
886, 86, 87syl2anc 409 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  ( M  x.  N )
)  ||  ( M  x.  ( K  gcd  N
) )  <->  ( K  gcd  ( M  x.  N
) )  ||  ( abs `  ( M  x.  ( K  gcd  N ) ) ) ) )
8985, 88mpbird 166 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( M  x.  ( K  gcd  N ) ) )
9089adantr 274 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  ( M  x.  N
) )  ||  ( M  x.  ( K  gcd  N ) ) )
9126, 90eqbrtrd 4004 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( K  gcd  ( M  x.  N ) )  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) ) 
||  ( M  x.  ( K  gcd  N ) ) )
922adantr 274 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  M  e.  ZZ )
93 dvdsmulcr 11761 . . . . . . 7  |-  ( ( ( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) )  e.  ZZ  /\  M  e.  ZZ  /\  ( ( K  gcd  N )  e.  ZZ  /\  ( K  gcd  N )  =/=  0 ) )  -> 
( ( ( ( K  gcd  ( M  x.  N ) )  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) ) 
||  ( M  x.  ( K  gcd  N ) )  <->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  M
) )
9447, 92, 20, 44, 93syl112anc 1232 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( ( K  gcd  ( M  x.  N )
)  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) )  ||  ( M  x.  ( K  gcd  N ) )  <->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  M
) )
9591, 94mpbid 146 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  M
)
96 dvdsgcd 11945 . . . . . 6  |-  ( ( ( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) )  e.  ZZ  /\  K  e.  ZZ  /\  M  e.  ZZ )  ->  (
( ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  K  /\  ( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) ) 
||  M )  -> 
( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) ) 
||  ( K  gcd  M ) ) )
9747, 48, 92, 96syl3anc 1228 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( ( K  gcd  ( M  x.  N )
)  /  ( K  gcd  N ) ) 
||  K  /\  (
( K  gcd  ( M  x.  N )
)  /  ( K  gcd  N ) ) 
||  M )  -> 
( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) ) 
||  ( K  gcd  M ) ) )
9851, 95, 97mp2and 430 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  ( K  gcd  M ) )
9911nn0zd 9311 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  M )  e.  ZZ )
10099adantr 274 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  M )  e.  ZZ )
101 dvdsmulc 11759 . . . . 5  |-  ( ( ( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) )  e.  ZZ  /\  ( K  gcd  M )  e.  ZZ  /\  ( K  gcd  N )  e.  ZZ )  ->  (
( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) ) 
||  ( K  gcd  M )  ->  ( (
( K  gcd  ( M  x.  N )
)  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) )  ||  (
( K  gcd  M
)  x.  ( K  gcd  N ) ) ) )
10247, 100, 20, 101syl3anc 1228 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( K  gcd  ( M  x.  N ) )  /  ( K  gcd  N ) )  ||  ( K  gcd  M )  -> 
( ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  x.  ( K  gcd  N ) ) 
||  ( ( K  gcd  M )  x.  ( K  gcd  N
) ) ) )
10398, 102mpd 13 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( K  gcd  ( M  x.  N ) )  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) ) 
||  ( ( K  gcd  M )  x.  ( K  gcd  N
) ) )
10426, 103eqbrtrrd 4006 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  ( M  x.  N
) )  ||  (
( K  gcd  M
)  x.  ( K  gcd  N ) ) )
105 zdceq 9266 . . . 4  |-  ( ( ( K  gcd  N
)  e.  ZZ  /\  0  e.  ZZ )  -> DECID  ( K  gcd  N )  =  0 )
10619, 22, 105syl2anc 409 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( K  gcd  N
)  =  0 )
107 exmiddc 826 . . . 4  |-  (DECID  ( K  gcd  N )  =  0  ->  ( ( K  gcd  N )  =  0  \/  -.  ( K  gcd  N )  =  0 ) )
108 df-ne 2337 . . . . 5  |-  ( ( K  gcd  N )  =/=  0  <->  -.  ( K  gcd  N )  =  0 )
109108orbi2i 752 . . . 4  |-  ( ( ( K  gcd  N
)  =  0  \/  ( K  gcd  N
)  =/=  0 )  <-> 
( ( K  gcd  N )  =  0  \/ 
-.  ( K  gcd  N )  =  0 ) )
110107, 109sylibr 133 . . 3  |-  (DECID  ( K  gcd  N )  =  0  ->  ( ( K  gcd  N )  =  0  \/  ( K  gcd  N )  =/=  0 ) )
111106, 110syl 14 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  N
)  =  0  \/  ( K  gcd  N
)  =/=  0 ) )
11215, 104, 111mpjaodan 788 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( ( K  gcd  M )  x.  ( K  gcd  N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824    /\ w3a 968    = wceq 1343    e. wcel 2136    =/= wne 2336   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   0cc0 7753    x. cmul 7758   # cap 8479    / cdiv 8568   NN0cn0 9114   ZZcz 9191   abscabs 10939    || cdvds 11727    gcd cgcd 11875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-sup 6949  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728  df-gcd 11876
This theorem is referenced by:  rpmulgcd2  12027  rpmul  12030
  Copyright terms: Public domain W3C validator