![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > plusfvalg | GIF version |
Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
plusffval.1 | β’ π΅ = (BaseβπΊ) |
plusffval.2 | β’ + = (+gβπΊ) |
plusffval.3 | ⒠⨣ = (+πβπΊ) |
Ref | Expression |
---|---|
plusfvalg | β’ ((πΊ β π β§ π β π΅ β§ π β π΅) β (π ⨣ π) = (π + π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plusffval.1 | . . . 4 β’ π΅ = (BaseβπΊ) | |
2 | plusffval.2 | . . . 4 β’ + = (+gβπΊ) | |
3 | plusffval.3 | . . . 4 ⒠⨣ = (+πβπΊ) | |
4 | 1, 2, 3 | plusffvalg 12786 | . . 3 β’ (πΊ β π β ⨣ = (π₯ β π΅, π¦ β π΅ β¦ (π₯ + π¦))) |
5 | 4 | 3ad2ant1 1018 | . 2 β’ ((πΊ β π β§ π β π΅ β§ π β π΅) β ⨣ = (π₯ β π΅, π¦ β π΅ β¦ (π₯ + π¦))) |
6 | oveq12 5886 | . . 3 β’ ((π₯ = π β§ π¦ = π) β (π₯ + π¦) = (π + π)) | |
7 | 6 | adantl 277 | . 2 β’ (((πΊ β π β§ π β π΅ β§ π β π΅) β§ (π₯ = π β§ π¦ = π)) β (π₯ + π¦) = (π + π)) |
8 | simp2 998 | . 2 β’ ((πΊ β π β§ π β π΅ β§ π β π΅) β π β π΅) | |
9 | simp3 999 | . 2 β’ ((πΊ β π β§ π β π΅ β§ π β π΅) β π β π΅) | |
10 | plusgslid 12573 | . . . . . 6 β’ (+g = Slot (+gβndx) β§ (+gβndx) β β) | |
11 | 10 | slotex 12491 | . . . . 5 β’ (πΊ β π β (+gβπΊ) β V) |
12 | 2, 11 | eqeltrid 2264 | . . . 4 β’ (πΊ β π β + β V) |
13 | 12 | 3ad2ant1 1018 | . . 3 β’ ((πΊ β π β§ π β π΅ β§ π β π΅) β + β V) |
14 | ovexg 5911 | . . 3 β’ ((π β π΅ β§ + β V β§ π β π΅) β (π + π) β V) | |
15 | 8, 13, 9, 14 | syl3anc 1238 | . 2 β’ ((πΊ β π β§ π β π΅ β§ π β π΅) β (π + π) β V) |
16 | 5, 7, 8, 9, 15 | ovmpod 6004 | 1 β’ ((πΊ β π β§ π β π΅ β§ π β π΅) β (π ⨣ π) = (π + π)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β§ w3a 978 = wceq 1353 β wcel 2148 Vcvv 2739 βcfv 5218 (class class class)co 5877 β cmpo 5879 Basecbs 12464 +gcplusg 12538 +πcplusf 12777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1re 7907 ax-addrcl 7910 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-inn 8922 df-2 8980 df-ndx 12467 df-slot 12468 df-base 12470 df-plusg 12551 df-plusf 12779 |
This theorem is referenced by: mndpfo 12844 lmodfopne 13421 |
Copyright terms: Public domain | W3C validator |