Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > plusfvalg | GIF version |
Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
plusffval.1 | ⊢ 𝐵 = (Base‘𝐺) |
plusffval.2 | ⊢ + = (+g‘𝐺) |
plusffval.3 | ⊢ ⨣ = (+𝑓‘𝐺) |
Ref | Expression |
---|---|
plusfvalg | ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⨣ 𝑌) = (𝑋 + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plusffval.1 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | plusffval.2 | . . . 4 ⊢ + = (+g‘𝐺) | |
3 | plusffval.3 | . . . 4 ⊢ ⨣ = (+𝑓‘𝐺) | |
4 | 1, 2, 3 | plusffvalg 12593 | . . 3 ⊢ (𝐺 ∈ 𝑉 → ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
5 | 4 | 3ad2ant1 1008 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
6 | oveq12 5851 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 + 𝑦) = (𝑋 + 𝑌)) | |
7 | 6 | adantl 275 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥 + 𝑦) = (𝑋 + 𝑌)) |
8 | simp2 988 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
9 | simp3 989 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
10 | plusgslid 12490 | . . . . . 6 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
11 | 10 | slotex 12421 | . . . . 5 ⊢ (𝐺 ∈ 𝑉 → (+g‘𝐺) ∈ V) |
12 | 2, 11 | eqeltrid 2253 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → + ∈ V) |
13 | 12 | 3ad2ant1 1008 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → + ∈ V) |
14 | ovexg 5876 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ + ∈ V ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ V) | |
15 | 8, 13, 9, 14 | syl3anc 1228 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ V) |
16 | 5, 7, 8, 9, 15 | ovmpod 5969 | 1 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⨣ 𝑌) = (𝑋 + 𝑌)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ‘cfv 5188 (class class class)co 5842 ∈ cmpo 5844 Basecbs 12394 +gcplusg 12457 +𝑓cplusf 12584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-inn 8858 df-2 8916 df-ndx 12397 df-slot 12398 df-base 12400 df-plusg 12470 df-plusf 12586 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |