ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plusfvalg GIF version

Theorem plusfvalg 12787
Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
plusffval.1 𝐡 = (Baseβ€˜πΊ)
plusffval.2 + = (+gβ€˜πΊ)
plusffval.3 ⨣ = (+π‘“β€˜πΊ)
Assertion
Ref Expression
plusfvalg ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 ⨣ π‘Œ) = (𝑋 + π‘Œ))

Proof of Theorem plusfvalg
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plusffval.1 . . . 4 𝐡 = (Baseβ€˜πΊ)
2 plusffval.2 . . . 4 + = (+gβ€˜πΊ)
3 plusffval.3 . . . 4 ⨣ = (+π‘“β€˜πΊ)
41, 2, 3plusffvalg 12786 . . 3 (𝐺 ∈ 𝑉 β†’ ⨣ = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ + 𝑦)))
543ad2ant1 1018 . 2 ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ ⨣ = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ + 𝑦)))
6 oveq12 5886 . . 3 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ) β†’ (π‘₯ + 𝑦) = (𝑋 + π‘Œ))
76adantl 277 . 2 (((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ)) β†’ (π‘₯ + 𝑦) = (𝑋 + π‘Œ))
8 simp2 998 . 2 ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ 𝑋 ∈ 𝐡)
9 simp3 999 . 2 ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ π‘Œ ∈ 𝐡)
10 plusgslid 12573 . . . . . 6 (+g = Slot (+gβ€˜ndx) ∧ (+gβ€˜ndx) ∈ β„•)
1110slotex 12491 . . . . 5 (𝐺 ∈ 𝑉 β†’ (+gβ€˜πΊ) ∈ V)
122, 11eqeltrid 2264 . . . 4 (𝐺 ∈ 𝑉 β†’ + ∈ V)
13123ad2ant1 1018 . . 3 ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ + ∈ V)
14 ovexg 5911 . . 3 ((𝑋 ∈ 𝐡 ∧ + ∈ V ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 + π‘Œ) ∈ V)
158, 13, 9, 14syl3anc 1238 . 2 ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 + π‘Œ) ∈ V)
165, 7, 8, 9, 15ovmpod 6004 1 ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 ⨣ π‘Œ) = (𝑋 + π‘Œ))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ∧ w3a 978   = wceq 1353   ∈ wcel 2148  Vcvv 2739  β€˜cfv 5218  (class class class)co 5877   ∈ cmpo 5879  Basecbs 12464  +gcplusg 12538  +𝑓cplusf 12777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-inn 8922  df-2 8980  df-ndx 12467  df-slot 12468  df-base 12470  df-plusg 12551  df-plusf 12779
This theorem is referenced by:  mndpfo  12844  lmodfopne  13421
  Copyright terms: Public domain W3C validator