![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > plusfvalg | GIF version |
Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
plusffval.1 | ⊢ 𝐵 = (Base‘𝐺) |
plusffval.2 | ⊢ + = (+g‘𝐺) |
plusffval.3 | ⊢ ⨣ = (+𝑓‘𝐺) |
Ref | Expression |
---|---|
plusfvalg | ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⨣ 𝑌) = (𝑋 + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plusffval.1 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | plusffval.2 | . . . 4 ⊢ + = (+g‘𝐺) | |
3 | plusffval.3 | . . . 4 ⊢ ⨣ = (+𝑓‘𝐺) | |
4 | 1, 2, 3 | plusffvalg 12804 | . . 3 ⊢ (𝐺 ∈ 𝑉 → ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
5 | 4 | 3ad2ant1 1020 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
6 | oveq12 5900 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 + 𝑦) = (𝑋 + 𝑌)) | |
7 | 6 | adantl 277 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥 + 𝑦) = (𝑋 + 𝑌)) |
8 | simp2 1000 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
9 | simp3 1001 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
10 | plusgslid 12590 | . . . . . 6 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
11 | 10 | slotex 12507 | . . . . 5 ⊢ (𝐺 ∈ 𝑉 → (+g‘𝐺) ∈ V) |
12 | 2, 11 | eqeltrid 2276 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → + ∈ V) |
13 | 12 | 3ad2ant1 1020 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → + ∈ V) |
14 | ovexg 5925 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ + ∈ V ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ V) | |
15 | 8, 13, 9, 14 | syl3anc 1249 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ V) |
16 | 5, 7, 8, 9, 15 | ovmpod 6019 | 1 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⨣ 𝑌) = (𝑋 + 𝑌)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 Vcvv 2752 ‘cfv 5231 (class class class)co 5891 ∈ cmpo 5893 Basecbs 12480 +gcplusg 12555 +𝑓cplusf 12795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7920 ax-resscn 7921 ax-1re 7923 ax-addrcl 7926 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-f1 5236 df-fo 5237 df-f1o 5238 df-fv 5239 df-ov 5894 df-oprab 5895 df-mpo 5896 df-1st 6159 df-2nd 6160 df-inn 8938 df-2 8996 df-ndx 12483 df-slot 12484 df-base 12486 df-plusg 12568 df-plusf 12797 |
This theorem is referenced by: mndpfo 12865 lmodfopne 13603 |
Copyright terms: Public domain | W3C validator |