ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodgt0 Unicode version

Theorem prodgt0 8896
Description: Infer that a multiplicand is positive from a nonnegative multiplier and positive product. (Contributed by NM, 24-Apr-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
prodgt0  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  0  <  B )

Proof of Theorem prodgt0
StepHypRef Expression
1 simpllr 534 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  B  e.  RR )
21renegcld 8423 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  -u B  e.  RR )
3 simplll 533 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  A  e.  RR )
43renegcld 8423 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  -u A  e.  RR )
5 simplr 528 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  B  e.  RR )
65lt0neg1d 8559 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  ( B  <  0  <->  0  <  -u B ) )
76biimpa 296 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  0  <  -u B )
8 simprr 531 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  0  <  ( A  x.  B
) )
9 simpll 527 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  A  e.  RR )
109recnd 8072 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  A  e.  CC )
115recnd 8072 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  B  e.  CC )
1210, 11mul2negd 8456 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  ( -u A  x.  -u B
)  =  ( A  x.  B ) )
138, 12breqtrrd 4062 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  0  <  ( -u A  x.  -u B ) )
1410negcld 8341 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  -u A  e.  CC )
1511negcld 8341 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  -u B  e.  CC )
1614, 15mulcomd 8065 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  ( -u A  x.  -u B
)  =  ( -u B  x.  -u A ) )
1713, 16breqtrd 4060 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  0  <  ( -u B  x.  -u A ) )
1817adantr 276 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  0  <  (
-u B  x.  -u A
) )
19 prodgt0gt0 8895 . . . . . 6  |-  ( ( ( -u B  e.  RR  /\  -u A  e.  RR )  /\  (
0  <  -u B  /\  0  <  ( -u B  x.  -u A ) ) )  ->  0  <  -u A )
202, 4, 7, 18, 19syl22anc 1250 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  0  <  -u A )
213lt0neg1d 8559 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  ( A  <  0  <->  0  <  -u A
) )
2220, 21mpbird 167 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  A  <  0 )
23 simplrl 535 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  0  <_  A )
24 0red 8044 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  0  e.  RR )
2524, 3lenltd 8161 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  ( 0  <_  A  <->  -.  A  <  0 ) )
2623, 25mpbid 147 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  -.  A  <  0 )
2722, 26pm2.65da 662 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  -.  B  <  0 )
28 0red 8044 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  0  e.  RR )
2928, 5lenltd 8161 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  (
0  <_  B  <->  -.  B  <  0 ) )
3027, 29mpbird 167 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  0  <_  B )
319, 5remulcld 8074 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  ( A  x.  B )  e.  RR )
3231, 8gt0ap0d 8673 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  ( A  x.  B ) #  0 )
3310, 11, 32mulap0bbd 8704 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  B #  0 )
34 0cnd 8036 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  0  e.  CC )
35 apsym 8650 . . . 4  |-  ( ( B  e.  CC  /\  0  e.  CC )  ->  ( B #  0  <->  0 #  B ) )
3611, 34, 35syl2anc 411 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  ( B #  0  <->  0 #  B )
)
3733, 36mpbid 147 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  0 #  B )
38 ltleap 8676 . . 3  |-  ( ( 0  e.  RR  /\  B  e.  RR )  ->  ( 0  <  B  <->  ( 0  <_  B  /\  0 #  B ) ) )
3928, 5, 38syl2anc 411 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  (
0  <  B  <->  ( 0  <_  B  /\  0 #  B ) ) )
4030, 37, 39mpbir2and 946 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  0  <  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2167   class class class wbr 4034  (class class class)co 5925   CCcc 7894   RRcr 7895   0cc0 7896    x. cmul 7901    < clt 8078    <_ cle 8079   -ucneg 8215   # cap 8625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717
This theorem is referenced by:  prodgt02  8897  prodgt0i  8952  evennn2n  12065
  Copyright terms: Public domain W3C validator