ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodgt0 Unicode version

Theorem prodgt0 8927
Description: Infer that a multiplicand is positive from a nonnegative multiplier and positive product. (Contributed by NM, 24-Apr-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
prodgt0  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  0  <  B )

Proof of Theorem prodgt0
StepHypRef Expression
1 simpllr 534 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  B  e.  RR )
21renegcld 8454 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  -u B  e.  RR )
3 simplll 533 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  A  e.  RR )
43renegcld 8454 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  -u A  e.  RR )
5 simplr 528 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  B  e.  RR )
65lt0neg1d 8590 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  ( B  <  0  <->  0  <  -u B ) )
76biimpa 296 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  0  <  -u B )
8 simprr 531 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  0  <  ( A  x.  B
) )
9 simpll 527 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  A  e.  RR )
109recnd 8103 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  A  e.  CC )
115recnd 8103 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  B  e.  CC )
1210, 11mul2negd 8487 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  ( -u A  x.  -u B
)  =  ( A  x.  B ) )
138, 12breqtrrd 4073 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  0  <  ( -u A  x.  -u B ) )
1410negcld 8372 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  -u A  e.  CC )
1511negcld 8372 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  -u B  e.  CC )
1614, 15mulcomd 8096 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  ( -u A  x.  -u B
)  =  ( -u B  x.  -u A ) )
1713, 16breqtrd 4071 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  0  <  ( -u B  x.  -u A ) )
1817adantr 276 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  0  <  (
-u B  x.  -u A
) )
19 prodgt0gt0 8926 . . . . . 6  |-  ( ( ( -u B  e.  RR  /\  -u A  e.  RR )  /\  (
0  <  -u B  /\  0  <  ( -u B  x.  -u A ) ) )  ->  0  <  -u A )
202, 4, 7, 18, 19syl22anc 1251 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  0  <  -u A )
213lt0neg1d 8590 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  ( A  <  0  <->  0  <  -u A
) )
2220, 21mpbird 167 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  A  <  0 )
23 simplrl 535 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  0  <_  A )
24 0red 8075 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  0  e.  RR )
2524, 3lenltd 8192 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  ( 0  <_  A  <->  -.  A  <  0 ) )
2623, 25mpbid 147 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  -.  A  <  0 )
2722, 26pm2.65da 663 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  -.  B  <  0 )
28 0red 8075 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  0  e.  RR )
2928, 5lenltd 8192 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  (
0  <_  B  <->  -.  B  <  0 ) )
3027, 29mpbird 167 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  0  <_  B )
319, 5remulcld 8105 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  ( A  x.  B )  e.  RR )
3231, 8gt0ap0d 8704 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  ( A  x.  B ) #  0 )
3310, 11, 32mulap0bbd 8735 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  B #  0 )
34 0cnd 8067 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  0  e.  CC )
35 apsym 8681 . . . 4  |-  ( ( B  e.  CC  /\  0  e.  CC )  ->  ( B #  0  <->  0 #  B ) )
3611, 34, 35syl2anc 411 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  ( B #  0  <->  0 #  B )
)
3733, 36mpbid 147 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  0 #  B )
38 ltleap 8707 . . 3  |-  ( ( 0  e.  RR  /\  B  e.  RR )  ->  ( 0  <  B  <->  ( 0  <_  B  /\  0 #  B ) ) )
3928, 5, 38syl2anc 411 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  (
0  <  B  <->  ( 0  <_  B  /\  0 #  B ) ) )
4030, 37, 39mpbir2and 947 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  0  <  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2176   class class class wbr 4045  (class class class)co 5946   CCcc 7925   RRcr 7926   0cc0 7927    x. cmul 7932    < clt 8109    <_ cle 8110   -ucneg 8246   # cap 8656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-po 4344  df-iso 4345  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748
This theorem is referenced by:  prodgt02  8928  prodgt0i  8983  evennn2n  12227
  Copyright terms: Public domain W3C validator