Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prodgt0 | Unicode version |
Description: Infer that a multiplicand is positive from a nonnegative multiplier and positive product. (Contributed by NM, 24-Apr-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
prodgt0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpllr 524 | . . . . . . 7 | |
2 | 1 | renegcld 8278 | . . . . . 6 |
3 | simplll 523 | . . . . . . 7 | |
4 | 3 | renegcld 8278 | . . . . . 6 |
5 | simplr 520 | . . . . . . . 8 | |
6 | 5 | lt0neg1d 8413 | . . . . . . 7 |
7 | 6 | biimpa 294 | . . . . . 6 |
8 | simprr 522 | . . . . . . . . 9 | |
9 | simpll 519 | . . . . . . . . . . 11 | |
10 | 9 | recnd 7927 | . . . . . . . . . 10 |
11 | 5 | recnd 7927 | . . . . . . . . . 10 |
12 | 10, 11 | mul2negd 8311 | . . . . . . . . 9 |
13 | 8, 12 | breqtrrd 4010 | . . . . . . . 8 |
14 | 10 | negcld 8196 | . . . . . . . . 9 |
15 | 11 | negcld 8196 | . . . . . . . . 9 |
16 | 14, 15 | mulcomd 7920 | . . . . . . . 8 |
17 | 13, 16 | breqtrd 4008 | . . . . . . 7 |
18 | 17 | adantr 274 | . . . . . 6 |
19 | prodgt0gt0 8746 | . . . . . 6 | |
20 | 2, 4, 7, 18, 19 | syl22anc 1229 | . . . . 5 |
21 | 3 | lt0neg1d 8413 | . . . . 5 |
22 | 20, 21 | mpbird 166 | . . . 4 |
23 | simplrl 525 | . . . . 5 | |
24 | 0red 7900 | . . . . . 6 | |
25 | 24, 3 | lenltd 8016 | . . . . 5 |
26 | 23, 25 | mpbid 146 | . . . 4 |
27 | 22, 26 | pm2.65da 651 | . . 3 |
28 | 0red 7900 | . . . 4 | |
29 | 28, 5 | lenltd 8016 | . . 3 |
30 | 27, 29 | mpbird 166 | . 2 |
31 | 9, 5 | remulcld 7929 | . . . . 5 |
32 | 31, 8 | gt0ap0d 8527 | . . . 4 # |
33 | 10, 11, 32 | mulap0bbd 8557 | . . 3 # |
34 | 0cnd 7892 | . . . 4 | |
35 | apsym 8504 | . . . 4 # # | |
36 | 11, 34, 35 | syl2anc 409 | . . 3 # # |
37 | 33, 36 | mpbid 146 | . 2 # |
38 | ltleap 8530 | . . 3 # | |
39 | 28, 5, 38 | syl2anc 409 | . 2 # |
40 | 30, 37, 39 | mpbir2and 934 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wcel 2136 class class class wbr 3982 (class class class)co 5842 cc 7751 cr 7752 cc0 7753 cmul 7758 clt 7933 cle 7934 cneg 8070 # cap 8479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 |
This theorem is referenced by: prodgt02 8748 prodgt0i 8803 evennn2n 11820 |
Copyright terms: Public domain | W3C validator |