![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qusaddflemg | GIF version |
Description: The operation of a quotient structure is a function. (Contributed by Mario Carneiro, 24-Feb-2015.) |
Ref | Expression |
---|---|
qusaddf.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
qusaddf.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
qusaddf.r | ⊢ (𝜑 → ∼ Er 𝑉) |
qusaddf.z | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
qusaddf.e | ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) |
qusaddf.c | ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) |
qusaddflem.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
qusaddflem.g | ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) |
qusaddflemg.x | ⊢ (𝜑 → · ∈ 𝑊) |
Ref | Expression |
---|---|
qusaddflemg | ⊢ (𝜑 → ∙ :((𝑉 / ∼ ) × (𝑉 / ∼ ))⟶(𝑉 / ∼ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusaddf.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) | |
2 | qusaddf.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
3 | qusaddflem.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
4 | qusaddf.r | . . . 4 ⊢ (𝜑 → ∼ Er 𝑉) | |
5 | basfn 12679 | . . . . . 6 ⊢ Base Fn V | |
6 | qusaddf.z | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
7 | 6 | elexd 2773 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ V) |
8 | funfvex 5572 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
9 | 8 | funfni 5355 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) |
10 | 5, 7, 9 | sylancr 414 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) ∈ V) |
11 | 2, 10 | eqeltrd 2270 | . . . 4 ⊢ (𝜑 → 𝑉 ∈ V) |
12 | erex 6613 | . . . 4 ⊢ ( ∼ Er 𝑉 → (𝑉 ∈ V → ∼ ∈ V)) | |
13 | 4, 11, 12 | sylc 62 | . . 3 ⊢ (𝜑 → ∼ ∈ V) |
14 | 1, 2, 3, 13, 6 | quslem 12910 | . 2 ⊢ (𝜑 → 𝐹:𝑉–onto→(𝑉 / ∼ )) |
15 | qusaddf.c | . . 3 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) | |
16 | qusaddf.e | . . 3 ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) | |
17 | 4, 11, 3, 15, 16 | ercpbl 12917 | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) |
18 | qusaddflem.g | . 2 ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) | |
19 | qusaddflemg.x | . 2 ⊢ (𝜑 → · ∈ 𝑊) | |
20 | 14, 17, 18, 11, 19, 15 | imasaddflemg 12902 | 1 ⊢ (𝜑 → ∙ :((𝑉 / ∼ ) × (𝑉 / ∼ ))⟶(𝑉 / ∼ )) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 Vcvv 2760 {csn 3619 〈cop 3622 ∪ ciun 3913 class class class wbr 4030 ↦ cmpt 4091 × cxp 4658 Fn wfn 5250 ⟶wf 5251 ‘cfv 5255 (class class class)co 5919 Er wer 6586 [cec 6587 / cqs 6588 Basecbs 12621 /s cqus 12886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-er 6589 df-ec 6591 df-qs 6595 df-inn 8985 df-ndx 12624 df-slot 12625 df-base 12627 |
This theorem is referenced by: qusaddf 12922 qusmulf 12924 |
Copyright terms: Public domain | W3C validator |