| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qusaddflemg | GIF version | ||
| Description: The operation of a quotient structure is a function. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| qusaddf.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
| qusaddf.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| qusaddf.r | ⊢ (𝜑 → ∼ Er 𝑉) |
| qusaddf.z | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
| qusaddf.e | ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) |
| qusaddf.c | ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) |
| qusaddflem.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
| qusaddflem.g | ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) |
| qusaddflemg.x | ⊢ (𝜑 → · ∈ 𝑊) |
| Ref | Expression |
|---|---|
| qusaddflemg | ⊢ (𝜑 → ∙ :((𝑉 / ∼ ) × (𝑉 / ∼ ))⟶(𝑉 / ∼ )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusaddf.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) | |
| 2 | qusaddf.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 3 | qusaddflem.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
| 4 | qusaddf.r | . . . 4 ⊢ (𝜑 → ∼ Er 𝑉) | |
| 5 | basfn 13005 | . . . . . 6 ⊢ Base Fn V | |
| 6 | qusaddf.z | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
| 7 | 6 | elexd 2790 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ V) |
| 8 | funfvex 5616 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
| 9 | 8 | funfni 5395 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) |
| 10 | 5, 7, 9 | sylancr 414 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) ∈ V) |
| 11 | 2, 10 | eqeltrd 2284 | . . . 4 ⊢ (𝜑 → 𝑉 ∈ V) |
| 12 | erex 6667 | . . . 4 ⊢ ( ∼ Er 𝑉 → (𝑉 ∈ V → ∼ ∈ V)) | |
| 13 | 4, 11, 12 | sylc 62 | . . 3 ⊢ (𝜑 → ∼ ∈ V) |
| 14 | 1, 2, 3, 13, 6 | quslem 13271 | . 2 ⊢ (𝜑 → 𝐹:𝑉–onto→(𝑉 / ∼ )) |
| 15 | qusaddf.c | . . 3 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) | |
| 16 | qusaddf.e | . . 3 ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) | |
| 17 | 4, 11, 3, 15, 16 | ercpbl 13278 | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) |
| 18 | qusaddflem.g | . 2 ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) | |
| 19 | qusaddflemg.x | . 2 ⊢ (𝜑 → · ∈ 𝑊) | |
| 20 | 14, 17, 18, 11, 19, 15 | imasaddflemg 13263 | 1 ⊢ (𝜑 → ∙ :((𝑉 / ∼ ) × (𝑉 / ∼ ))⟶(𝑉 / ∼ )) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 Vcvv 2776 {csn 3643 〈cop 3646 ∪ ciun 3941 class class class wbr 4059 ↦ cmpt 4121 × cxp 4691 Fn wfn 5285 ⟶wf 5286 ‘cfv 5290 (class class class)co 5967 Er wer 6640 [cec 6641 / cqs 6642 Basecbs 12947 /s cqus 13247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-er 6643 df-ec 6645 df-qs 6649 df-inn 9072 df-ndx 12950 df-slot 12951 df-base 12953 |
| This theorem is referenced by: qusaddf 13283 qusmulf 13285 |
| Copyright terms: Public domain | W3C validator |