Proof of Theorem redc0
Step | Hyp | Ref
| Expression |
1 | | 0re 7861 |
. . . . 5
⊢ 0 ∈
ℝ |
2 | | eqeq1 2164 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑧 = 𝑦)) |
3 | 2 | dcbid 824 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (DECID 𝑥 = 𝑦 ↔ DECID 𝑧 = 𝑦)) |
4 | | eqeq2 2167 |
. . . . . . 7
⊢ (𝑦 = 0 → (𝑧 = 𝑦 ↔ 𝑧 = 0)) |
5 | 4 | dcbid 824 |
. . . . . 6
⊢ (𝑦 = 0 →
(DECID 𝑧 =
𝑦 ↔
DECID 𝑧 =
0)) |
6 | 3, 5 | rspc2v 2829 |
. . . . 5
⊢ ((𝑧 ∈ ℝ ∧ 0 ∈
ℝ) → (∀𝑥
∈ ℝ ∀𝑦
∈ ℝ DECID 𝑥 = 𝑦 → DECID 𝑧 = 0)) |
7 | 1, 6 | mpan2 422 |
. . . 4
⊢ (𝑧 ∈ ℝ →
(∀𝑥 ∈ ℝ
∀𝑦 ∈ ℝ
DECID 𝑥 =
𝑦 →
DECID 𝑧 =
0)) |
8 | 7 | impcom 124 |
. . 3
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ DECID 𝑥 = 𝑦 ∧ 𝑧 ∈ ℝ) → DECID
𝑧 = 0) |
9 | 8 | ralrimiva 2530 |
. 2
⊢
(∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ DECID 𝑥 = 𝑦 → ∀𝑧 ∈ ℝ DECID 𝑧 = 0) |
10 | | eqeq1 2164 |
. . . . . 6
⊢ (𝑧 = (𝑥 − 𝑦) → (𝑧 = 0 ↔ (𝑥 − 𝑦) = 0)) |
11 | 10 | dcbid 824 |
. . . . 5
⊢ (𝑧 = (𝑥 − 𝑦) → (DECID 𝑧 = 0 ↔ DECID
(𝑥 − 𝑦) = 0)) |
12 | | simpl 108 |
. . . . 5
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑧 ∈ ℝ
DECID 𝑧 =
0) |
13 | | resubcl 8122 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 − 𝑦) ∈ ℝ) |
14 | 13 | adantl 275 |
. . . . 5
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 − 𝑦) ∈ ℝ) |
15 | 11, 12, 14 | rspcdva 2821 |
. . . 4
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → DECID
(𝑥 − 𝑦) = 0) |
16 | | simprl 521 |
. . . . . . 7
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ) |
17 | 16 | recnd 7889 |
. . . . . 6
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℂ) |
18 | | simprr 522 |
. . . . . . 7
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ) |
19 | 18 | recnd 7889 |
. . . . . 6
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℂ) |
20 | 17, 19 | subeq0ad 8179 |
. . . . 5
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 − 𝑦) = 0 ↔ 𝑥 = 𝑦)) |
21 | 20 | dcbid 824 |
. . . 4
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) →
(DECID (𝑥
− 𝑦) = 0 ↔
DECID 𝑥 =
𝑦)) |
22 | 15, 21 | mpbid 146 |
. . 3
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → DECID
𝑥 = 𝑦) |
23 | 22 | ralrimivva 2539 |
. 2
⊢
(∀𝑧 ∈
ℝ DECID 𝑧 = 0 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦) |
24 | 9, 23 | impbii 125 |
1
⊢
(∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ DECID 𝑥 = 𝑦 ↔ ∀𝑧 ∈ ℝ DECID 𝑧 = 0) |