Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  redc0 GIF version

Theorem redc0 13936
Description: Two ways to express decidability of real number equality. (Contributed by Jim Kingdon, 23-Jul-2024.)
Assertion
Ref Expression
redc0 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 ↔ ∀𝑧 ∈ ℝ DECID 𝑧 = 0)
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem redc0
StepHypRef Expression
1 0re 7899 . . . . 5 0 ∈ ℝ
2 eqeq1 2172 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
32dcbid 828 . . . . . 6 (𝑥 = 𝑧 → (DECID 𝑥 = 𝑦DECID 𝑧 = 𝑦))
4 eqeq2 2175 . . . . . . 7 (𝑦 = 0 → (𝑧 = 𝑦𝑧 = 0))
54dcbid 828 . . . . . 6 (𝑦 = 0 → (DECID 𝑧 = 𝑦DECID 𝑧 = 0))
63, 5rspc2v 2843 . . . . 5 ((𝑧 ∈ ℝ ∧ 0 ∈ ℝ) → (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦DECID 𝑧 = 0))
71, 6mpan2 422 . . . 4 (𝑧 ∈ ℝ → (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦DECID 𝑧 = 0))
87impcom 124 . . 3 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦𝑧 ∈ ℝ) → DECID 𝑧 = 0)
98ralrimiva 2539 . 2 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 → ∀𝑧 ∈ ℝ DECID 𝑧 = 0)
10 eqeq1 2172 . . . . . 6 (𝑧 = (𝑥𝑦) → (𝑧 = 0 ↔ (𝑥𝑦) = 0))
1110dcbid 828 . . . . 5 (𝑧 = (𝑥𝑦) → (DECID 𝑧 = 0 ↔ DECID (𝑥𝑦) = 0))
12 simpl 108 . . . . 5 ((∀𝑧 ∈ ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑧 ∈ ℝ DECID 𝑧 = 0)
13 resubcl 8162 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦) ∈ ℝ)
1413adantl 275 . . . . 5 ((∀𝑧 ∈ ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥𝑦) ∈ ℝ)
1511, 12, 14rspcdva 2835 . . . 4 ((∀𝑧 ∈ ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → DECID (𝑥𝑦) = 0)
16 simprl 521 . . . . . . 7 ((∀𝑧 ∈ ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
1716recnd 7927 . . . . . 6 ((∀𝑧 ∈ ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℂ)
18 simprr 522 . . . . . . 7 ((∀𝑧 ∈ ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
1918recnd 7927 . . . . . 6 ((∀𝑧 ∈ ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℂ)
2017, 19subeq0ad 8219 . . . . 5 ((∀𝑧 ∈ ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
2120dcbid 828 . . . 4 ((∀𝑧 ∈ ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (DECID (𝑥𝑦) = 0 ↔ DECID 𝑥 = 𝑦))
2215, 21mpbid 146 . . 3 ((∀𝑧 ∈ ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → DECID 𝑥 = 𝑦)
2322ralrimivva 2548 . 2 (∀𝑧 ∈ ℝ DECID 𝑧 = 0 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦)
249, 23impbii 125 1 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 ↔ ∀𝑧 ∈ ℝ DECID 𝑧 = 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  DECID wdc 824   = wceq 1343  wcel 2136  wral 2444  (class class class)co 5842  cr 7752  0cc0 7753  cmin 8069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-sub 8071  df-neg 8072
This theorem is referenced by:  dcapnconstALT  13940
  Copyright terms: Public domain W3C validator