Proof of Theorem redc0
| Step | Hyp | Ref
 | Expression | 
| 1 |   | 0re 8026 | 
. . . . 5
⊢ 0 ∈
ℝ | 
| 2 |   | eqeq1 2203 | 
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑧 = 𝑦)) | 
| 3 | 2 | dcbid 839 | 
. . . . . 6
⊢ (𝑥 = 𝑧 → (DECID 𝑥 = 𝑦 ↔ DECID 𝑧 = 𝑦)) | 
| 4 |   | eqeq2 2206 | 
. . . . . . 7
⊢ (𝑦 = 0 → (𝑧 = 𝑦 ↔ 𝑧 = 0)) | 
| 5 | 4 | dcbid 839 | 
. . . . . 6
⊢ (𝑦 = 0 →
(DECID 𝑧 =
𝑦 ↔
DECID 𝑧 =
0)) | 
| 6 | 3, 5 | rspc2v 2881 | 
. . . . 5
⊢ ((𝑧 ∈ ℝ ∧ 0 ∈
ℝ) → (∀𝑥
∈ ℝ ∀𝑦
∈ ℝ DECID 𝑥 = 𝑦 → DECID 𝑧 = 0)) | 
| 7 | 1, 6 | mpan2 425 | 
. . . 4
⊢ (𝑧 ∈ ℝ →
(∀𝑥 ∈ ℝ
∀𝑦 ∈ ℝ
DECID 𝑥 =
𝑦 →
DECID 𝑧 =
0)) | 
| 8 | 7 | impcom 125 | 
. . 3
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ DECID 𝑥 = 𝑦 ∧ 𝑧 ∈ ℝ) → DECID
𝑧 = 0) | 
| 9 | 8 | ralrimiva 2570 | 
. 2
⊢
(∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ DECID 𝑥 = 𝑦 → ∀𝑧 ∈ ℝ DECID 𝑧 = 0) | 
| 10 |   | eqeq1 2203 | 
. . . . . 6
⊢ (𝑧 = (𝑥 − 𝑦) → (𝑧 = 0 ↔ (𝑥 − 𝑦) = 0)) | 
| 11 | 10 | dcbid 839 | 
. . . . 5
⊢ (𝑧 = (𝑥 − 𝑦) → (DECID 𝑧 = 0 ↔ DECID
(𝑥 − 𝑦) = 0)) | 
| 12 |   | simpl 109 | 
. . . . 5
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑧 ∈ ℝ
DECID 𝑧 =
0) | 
| 13 |   | resubcl 8290 | 
. . . . . 6
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 − 𝑦) ∈ ℝ) | 
| 14 | 13 | adantl 277 | 
. . . . 5
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 − 𝑦) ∈ ℝ) | 
| 15 | 11, 12, 14 | rspcdva 2873 | 
. . . 4
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → DECID
(𝑥 − 𝑦) = 0) | 
| 16 |   | simprl 529 | 
. . . . . . 7
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ) | 
| 17 | 16 | recnd 8055 | 
. . . . . 6
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℂ) | 
| 18 |   | simprr 531 | 
. . . . . . 7
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ) | 
| 19 | 18 | recnd 8055 | 
. . . . . 6
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℂ) | 
| 20 | 17, 19 | subeq0ad 8347 | 
. . . . 5
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 − 𝑦) = 0 ↔ 𝑥 = 𝑦)) | 
| 21 | 20 | dcbid 839 | 
. . . 4
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) →
(DECID (𝑥
− 𝑦) = 0 ↔
DECID 𝑥 =
𝑦)) | 
| 22 | 15, 21 | mpbid 147 | 
. . 3
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → DECID
𝑥 = 𝑦) | 
| 23 | 22 | ralrimivva 2579 | 
. 2
⊢
(∀𝑧 ∈
ℝ DECID 𝑧 = 0 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦) | 
| 24 | 9, 23 | impbii 126 | 
1
⊢
(∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ DECID 𝑥 = 𝑦 ↔ ∀𝑧 ∈ ℝ DECID 𝑧 = 0) |