Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  redc0 GIF version

Theorem redc0 16070
Description: Two ways to express decidability of real number equality. (Contributed by Jim Kingdon, 23-Jul-2024.)
Assertion
Ref Expression
redc0 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 ↔ ∀𝑧 ∈ ℝ DECID 𝑧 = 0)
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem redc0
StepHypRef Expression
1 0re 8079 . . . . 5 0 ∈ ℝ
2 eqeq1 2213 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
32dcbid 840 . . . . . 6 (𝑥 = 𝑧 → (DECID 𝑥 = 𝑦DECID 𝑧 = 𝑦))
4 eqeq2 2216 . . . . . . 7 (𝑦 = 0 → (𝑧 = 𝑦𝑧 = 0))
54dcbid 840 . . . . . 6 (𝑦 = 0 → (DECID 𝑧 = 𝑦DECID 𝑧 = 0))
63, 5rspc2v 2891 . . . . 5 ((𝑧 ∈ ℝ ∧ 0 ∈ ℝ) → (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦DECID 𝑧 = 0))
71, 6mpan2 425 . . . 4 (𝑧 ∈ ℝ → (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦DECID 𝑧 = 0))
87impcom 125 . . 3 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦𝑧 ∈ ℝ) → DECID 𝑧 = 0)
98ralrimiva 2580 . 2 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 → ∀𝑧 ∈ ℝ DECID 𝑧 = 0)
10 eqeq1 2213 . . . . . 6 (𝑧 = (𝑥𝑦) → (𝑧 = 0 ↔ (𝑥𝑦) = 0))
1110dcbid 840 . . . . 5 (𝑧 = (𝑥𝑦) → (DECID 𝑧 = 0 ↔ DECID (𝑥𝑦) = 0))
12 simpl 109 . . . . 5 ((∀𝑧 ∈ ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑧 ∈ ℝ DECID 𝑧 = 0)
13 resubcl 8343 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦) ∈ ℝ)
1413adantl 277 . . . . 5 ((∀𝑧 ∈ ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥𝑦) ∈ ℝ)
1511, 12, 14rspcdva 2883 . . . 4 ((∀𝑧 ∈ ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → DECID (𝑥𝑦) = 0)
16 simprl 529 . . . . . . 7 ((∀𝑧 ∈ ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
1716recnd 8108 . . . . . 6 ((∀𝑧 ∈ ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℂ)
18 simprr 531 . . . . . . 7 ((∀𝑧 ∈ ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
1918recnd 8108 . . . . . 6 ((∀𝑧 ∈ ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℂ)
2017, 19subeq0ad 8400 . . . . 5 ((∀𝑧 ∈ ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
2120dcbid 840 . . . 4 ((∀𝑧 ∈ ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (DECID (𝑥𝑦) = 0 ↔ DECID 𝑥 = 𝑦))
2215, 21mpbid 147 . . 3 ((∀𝑧 ∈ ℝ DECID 𝑧 = 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → DECID 𝑥 = 𝑦)
2322ralrimivva 2589 . 2 (∀𝑧 ∈ ℝ DECID 𝑧 = 0 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦)
249, 23impbii 126 1 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 ↔ ∀𝑧 ∈ ℝ DECID 𝑧 = 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 836   = wceq 1373  wcel 2177  wral 2485  (class class class)co 5951  cr 7931  0cc0 7932  cmin 8250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-setind 4589  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-distr 8036  ax-i2m1 8037  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-iota 5237  df-fun 5278  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-sub 8252  df-neg 8253
This theorem is referenced by:  dcapnconstALT  16075
  Copyright terms: Public domain W3C validator