ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlem1arp Unicode version

Theorem resqrexlem1arp 11511
Description: Lemma for resqrex 11532.  1  +  A is a positive real (expressed in a way that will help apply seqf 10681 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
Hypotheses
Ref Expression
resqrexlem1arp.a  |-  ( ph  ->  A  e.  RR )
resqrexlem1arp.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlem1arp  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( NN  X.  { ( 1  +  A ) } ) `  N
)  e.  RR+ )

Proof of Theorem resqrexlem1arp
StepHypRef Expression
1 1red 8157 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  1  e.  RR )
2 resqrexlem1arp.a . . . . . 6  |-  ( ph  ->  A  e.  RR )
32adantr 276 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  A  e.  RR )
41, 3readdcld 8172 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( 1  +  A )  e.  RR )
5 0lt1 8269 . . . . . 6  |-  0  <  1
65a1i 9 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  0  <  1 )
7 resqrexlem1arp.agt0 . . . . . 6  |-  ( ph  ->  0  <_  A )
87adantr 276 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  0  <_  A )
9 addgtge0 8593 . . . . 5  |-  ( ( ( 1  e.  RR  /\  A  e.  RR )  /\  ( 0  <  1  /\  0  <_  A ) )  -> 
0  <  ( 1  +  A ) )
101, 3, 6, 8, 9syl22anc 1272 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  0  < 
( 1  +  A
) )
114, 10elrpd 9885 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( 1  +  A )  e.  RR+ )
12 fvconst2g 5852 . . 3  |-  ( ( ( 1  +  A
)  e.  RR+  /\  N  e.  NN )  ->  (
( NN  X.  {
( 1  +  A
) } ) `  N )  =  ( 1  +  A ) )
1311, 12sylancom 420 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( NN  X.  { ( 1  +  A ) } ) `  N
)  =  ( 1  +  A ) )
1413, 11eqeltrd 2306 1  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( NN  X.  { ( 1  +  A ) } ) `  N
)  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   {csn 3666   class class class wbr 4082    X. cxp 4716   ` cfv 5317  (class class class)co 6000   RRcr 7994   0cc0 7995   1c1 7996    + caddc 7998    < clt 8177    <_ cle 8178   NNcn 9106   RR+crp 9845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltwlin 8108  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-ov 6003  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-rp 9846
This theorem is referenced by:  resqrexlemf  11513  resqrexlemf1  11514  resqrexlemfp1  11515
  Copyright terms: Public domain W3C validator