ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlem1arp Unicode version

Theorem resqrexlem1arp 10777
Description: Lemma for resqrex 10798.  1  +  A is a positive real (expressed in a way that will help apply seqf 10234 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
Hypotheses
Ref Expression
resqrexlem1arp.a  |-  ( ph  ->  A  e.  RR )
resqrexlem1arp.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlem1arp  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( NN  X.  { ( 1  +  A ) } ) `  N
)  e.  RR+ )

Proof of Theorem resqrexlem1arp
StepHypRef Expression
1 1red 7781 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  1  e.  RR )
2 resqrexlem1arp.a . . . . . 6  |-  ( ph  ->  A  e.  RR )
32adantr 274 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  A  e.  RR )
41, 3readdcld 7795 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( 1  +  A )  e.  RR )
5 0lt1 7889 . . . . . 6  |-  0  <  1
65a1i 9 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  0  <  1 )
7 resqrexlem1arp.agt0 . . . . . 6  |-  ( ph  ->  0  <_  A )
87adantr 274 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  0  <_  A )
9 addgtge0 8212 . . . . 5  |-  ( ( ( 1  e.  RR  /\  A  e.  RR )  /\  ( 0  <  1  /\  0  <_  A ) )  -> 
0  <  ( 1  +  A ) )
101, 3, 6, 8, 9syl22anc 1217 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  0  < 
( 1  +  A
) )
114, 10elrpd 9481 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( 1  +  A )  e.  RR+ )
12 fvconst2g 5634 . . 3  |-  ( ( ( 1  +  A
)  e.  RR+  /\  N  e.  NN )  ->  (
( NN  X.  {
( 1  +  A
) } ) `  N )  =  ( 1  +  A ) )
1311, 12sylancom 416 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( NN  X.  { ( 1  +  A ) } ) `  N
)  =  ( 1  +  A ) )
1413, 11eqeltrd 2216 1  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( NN  X.  { ( 1  +  A ) } ) `  N
)  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   {csn 3527   class class class wbr 3929    X. cxp 4537   ` cfv 5123  (class class class)co 5774   RRcr 7619   0cc0 7620   1c1 7621    + caddc 7623    < clt 7800    <_ cle 7801   NNcn 8720   RR+crp 9441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-pre-ltwlin 7733  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-rp 9442
This theorem is referenced by:  resqrexlemf  10779  resqrexlemf1  10780  resqrexlemfp1  10781
  Copyright terms: Public domain W3C validator