ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlem1arp Unicode version

Theorem resqrexlem1arp 11149
Description: Lemma for resqrex 11170.  1  +  A is a positive real (expressed in a way that will help apply seqf 10535 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
Hypotheses
Ref Expression
resqrexlem1arp.a  |-  ( ph  ->  A  e.  RR )
resqrexlem1arp.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlem1arp  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( NN  X.  { ( 1  +  A ) } ) `  N
)  e.  RR+ )

Proof of Theorem resqrexlem1arp
StepHypRef Expression
1 1red 8034 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  1  e.  RR )
2 resqrexlem1arp.a . . . . . 6  |-  ( ph  ->  A  e.  RR )
32adantr 276 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  A  e.  RR )
41, 3readdcld 8049 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( 1  +  A )  e.  RR )
5 0lt1 8146 . . . . . 6  |-  0  <  1
65a1i 9 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  0  <  1 )
7 resqrexlem1arp.agt0 . . . . . 6  |-  ( ph  ->  0  <_  A )
87adantr 276 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  0  <_  A )
9 addgtge0 8469 . . . . 5  |-  ( ( ( 1  e.  RR  /\  A  e.  RR )  /\  ( 0  <  1  /\  0  <_  A ) )  -> 
0  <  ( 1  +  A ) )
101, 3, 6, 8, 9syl22anc 1250 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  0  < 
( 1  +  A
) )
114, 10elrpd 9759 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( 1  +  A )  e.  RR+ )
12 fvconst2g 5772 . . 3  |-  ( ( ( 1  +  A
)  e.  RR+  /\  N  e.  NN )  ->  (
( NN  X.  {
( 1  +  A
) } ) `  N )  =  ( 1  +  A ) )
1311, 12sylancom 420 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( NN  X.  { ( 1  +  A ) } ) `  N
)  =  ( 1  +  A ) )
1413, 11eqeltrd 2270 1  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( NN  X.  { ( 1  +  A ) } ) `  N
)  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   {csn 3618   class class class wbr 4029    X. cxp 4657   ` cfv 5254  (class class class)co 5918   RRcr 7871   0cc0 7872   1c1 7873    + caddc 7875    < clt 8054    <_ cle 8055   NNcn 8982   RR+crp 9719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltwlin 7985  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-rp 9720
This theorem is referenced by:  resqrexlemf  11151  resqrexlemf1  11152  resqrexlemfp1  11153
  Copyright terms: Public domain W3C validator