ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlem1arp GIF version

Theorem resqrexlem1arp 11016
Description: Lemma for resqrex 11037. 1 + 𝐴 is a positive real (expressed in a way that will help apply seqf 10463 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
Hypotheses
Ref Expression
resqrexlem1arp.a (𝜑𝐴 ∈ ℝ)
resqrexlem1arp.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlem1arp ((𝜑𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) ∈ ℝ+)

Proof of Theorem resqrexlem1arp
StepHypRef Expression
1 1red 7974 . . . . 5 ((𝜑𝑁 ∈ ℕ) → 1 ∈ ℝ)
2 resqrexlem1arp.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
32adantr 276 . . . . 5 ((𝜑𝑁 ∈ ℕ) → 𝐴 ∈ ℝ)
41, 3readdcld 7989 . . . 4 ((𝜑𝑁 ∈ ℕ) → (1 + 𝐴) ∈ ℝ)
5 0lt1 8086 . . . . . 6 0 < 1
65a1i 9 . . . . 5 ((𝜑𝑁 ∈ ℕ) → 0 < 1)
7 resqrexlem1arp.agt0 . . . . . 6 (𝜑 → 0 ≤ 𝐴)
87adantr 276 . . . . 5 ((𝜑𝑁 ∈ ℕ) → 0 ≤ 𝐴)
9 addgtge0 8409 . . . . 5 (((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (0 < 1 ∧ 0 ≤ 𝐴)) → 0 < (1 + 𝐴))
101, 3, 6, 8, 9syl22anc 1239 . . . 4 ((𝜑𝑁 ∈ ℕ) → 0 < (1 + 𝐴))
114, 10elrpd 9695 . . 3 ((𝜑𝑁 ∈ ℕ) → (1 + 𝐴) ∈ ℝ+)
12 fvconst2g 5732 . . 3 (((1 + 𝐴) ∈ ℝ+𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) = (1 + 𝐴))
1311, 12sylancom 420 . 2 ((𝜑𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) = (1 + 𝐴))
1413, 11eqeltrd 2254 1 ((𝜑𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) ∈ ℝ+)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  {csn 3594   class class class wbr 4005   × cxp 4626  cfv 5218  (class class class)co 5877  cr 7812  0cc0 7813  1c1 7814   + caddc 7816   < clt 7994  cle 7995  cn 8921  +crp 9655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltwlin 7926  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-rp 9656
This theorem is referenced by:  resqrexlemf  11018  resqrexlemf1  11019  resqrexlemfp1  11020
  Copyright terms: Public domain W3C validator