![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resqrexlem1arp | GIF version |
Description: Lemma for resqrex 11170. 1 + 𝐴 is a positive real (expressed in a way that will help apply seqf 10535 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.) |
Ref | Expression |
---|---|
resqrexlem1arp.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
resqrexlem1arp.agt0 | ⊢ (𝜑 → 0 ≤ 𝐴) |
Ref | Expression |
---|---|
resqrexlem1arp | ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1red 8034 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 1 ∈ ℝ) | |
2 | resqrexlem1arp.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | 2 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℝ) |
4 | 1, 3 | readdcld 8049 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (1 + 𝐴) ∈ ℝ) |
5 | 0lt1 8146 | . . . . . 6 ⊢ 0 < 1 | |
6 | 5 | a1i 9 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 0 < 1) |
7 | resqrexlem1arp.agt0 | . . . . . 6 ⊢ (𝜑 → 0 ≤ 𝐴) | |
8 | 7 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 0 ≤ 𝐴) |
9 | addgtge0 8469 | . . . . 5 ⊢ (((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (0 < 1 ∧ 0 ≤ 𝐴)) → 0 < (1 + 𝐴)) | |
10 | 1, 3, 6, 8, 9 | syl22anc 1250 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 0 < (1 + 𝐴)) |
11 | 4, 10 | elrpd 9759 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (1 + 𝐴) ∈ ℝ+) |
12 | fvconst2g 5772 | . . 3 ⊢ (((1 + 𝐴) ∈ ℝ+ ∧ 𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) = (1 + 𝐴)) | |
13 | 11, 12 | sylancom 420 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) = (1 + 𝐴)) |
14 | 13, 11 | eqeltrd 2270 | 1 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) ∈ ℝ+) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 {csn 3618 class class class wbr 4029 × cxp 4657 ‘cfv 5254 (class class class)co 5918 ℝcr 7871 0cc0 7872 1c1 7873 + caddc 7875 < clt 8054 ≤ cle 8055 ℕcn 8982 ℝ+crp 9719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltwlin 7985 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-ov 5921 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-rp 9720 |
This theorem is referenced by: resqrexlemf 11151 resqrexlemf1 11152 resqrexlemfp1 11153 |
Copyright terms: Public domain | W3C validator |