![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resqrexlem1arp | GIF version |
Description: Lemma for resqrex 11003. 1 + 𝐴 is a positive real (expressed in a way that will help apply seqf 10431 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.) |
Ref | Expression |
---|---|
resqrexlem1arp.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
resqrexlem1arp.agt0 | ⊢ (𝜑 → 0 ≤ 𝐴) |
Ref | Expression |
---|---|
resqrexlem1arp | ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1red 7947 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 1 ∈ ℝ) | |
2 | resqrexlem1arp.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | 2 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℝ) |
4 | 1, 3 | readdcld 7961 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (1 + 𝐴) ∈ ℝ) |
5 | 0lt1 8058 | . . . . . 6 ⊢ 0 < 1 | |
6 | 5 | a1i 9 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 0 < 1) |
7 | resqrexlem1arp.agt0 | . . . . . 6 ⊢ (𝜑 → 0 ≤ 𝐴) | |
8 | 7 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 0 ≤ 𝐴) |
9 | addgtge0 8381 | . . . . 5 ⊢ (((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (0 < 1 ∧ 0 ≤ 𝐴)) → 0 < (1 + 𝐴)) | |
10 | 1, 3, 6, 8, 9 | syl22anc 1239 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 0 < (1 + 𝐴)) |
11 | 4, 10 | elrpd 9664 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (1 + 𝐴) ∈ ℝ+) |
12 | fvconst2g 5722 | . . 3 ⊢ (((1 + 𝐴) ∈ ℝ+ ∧ 𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) = (1 + 𝐴)) | |
13 | 11, 12 | sylancom 420 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) = (1 + 𝐴)) |
14 | 13, 11 | eqeltrd 2252 | 1 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) ∈ ℝ+) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2146 {csn 3589 class class class wbr 3998 × cxp 4618 ‘cfv 5208 (class class class)co 5865 ℝcr 7785 0cc0 7786 1c1 7787 + caddc 7789 < clt 7966 ≤ cle 7967 ℕcn 8892 ℝ+crp 9624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-pre-ltwlin 7899 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-ov 5868 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-rp 9625 |
This theorem is referenced by: resqrexlemf 10984 resqrexlemf1 10985 resqrexlemfp1 10986 |
Copyright terms: Public domain | W3C validator |