Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resqrexlem1arp | GIF version |
Description: Lemma for resqrex 10990. 1 + 𝐴 is a positive real (expressed in a way that will help apply seqf 10417 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.) |
Ref | Expression |
---|---|
resqrexlem1arp.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
resqrexlem1arp.agt0 | ⊢ (𝜑 → 0 ≤ 𝐴) |
Ref | Expression |
---|---|
resqrexlem1arp | ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1red 7935 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 1 ∈ ℝ) | |
2 | resqrexlem1arp.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | 2 | adantr 274 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℝ) |
4 | 1, 3 | readdcld 7949 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (1 + 𝐴) ∈ ℝ) |
5 | 0lt1 8046 | . . . . . 6 ⊢ 0 < 1 | |
6 | 5 | a1i 9 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 0 < 1) |
7 | resqrexlem1arp.agt0 | . . . . . 6 ⊢ (𝜑 → 0 ≤ 𝐴) | |
8 | 7 | adantr 274 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 0 ≤ 𝐴) |
9 | addgtge0 8369 | . . . . 5 ⊢ (((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (0 < 1 ∧ 0 ≤ 𝐴)) → 0 < (1 + 𝐴)) | |
10 | 1, 3, 6, 8, 9 | syl22anc 1234 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 0 < (1 + 𝐴)) |
11 | 4, 10 | elrpd 9650 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (1 + 𝐴) ∈ ℝ+) |
12 | fvconst2g 5710 | . . 3 ⊢ (((1 + 𝐴) ∈ ℝ+ ∧ 𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) = (1 + 𝐴)) | |
13 | 11, 12 | sylancom 418 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) = (1 + 𝐴)) |
14 | 13, 11 | eqeltrd 2247 | 1 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) ∈ ℝ+) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 {csn 3583 class class class wbr 3989 × cxp 4609 ‘cfv 5198 (class class class)co 5853 ℝcr 7773 0cc0 7774 1c1 7775 + caddc 7777 < clt 7954 ≤ cle 7955 ℕcn 8878 ℝ+crp 9610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-pre-ltwlin 7887 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-rp 9611 |
This theorem is referenced by: resqrexlemf 10971 resqrexlemf1 10972 resqrexlemfp1 10973 |
Copyright terms: Public domain | W3C validator |