| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resqrexlem1arp | GIF version | ||
| Description: Lemma for resqrex 11387. 1 + 𝐴 is a positive real (expressed in a way that will help apply seqf 10622 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.) |
| Ref | Expression |
|---|---|
| resqrexlem1arp.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| resqrexlem1arp.agt0 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| Ref | Expression |
|---|---|
| resqrexlem1arp | ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1red 8100 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 1 ∈ ℝ) | |
| 2 | resqrexlem1arp.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | 2 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℝ) |
| 4 | 1, 3 | readdcld 8115 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (1 + 𝐴) ∈ ℝ) |
| 5 | 0lt1 8212 | . . . . . 6 ⊢ 0 < 1 | |
| 6 | 5 | a1i 9 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 0 < 1) |
| 7 | resqrexlem1arp.agt0 | . . . . . 6 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 8 | 7 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 0 ≤ 𝐴) |
| 9 | addgtge0 8536 | . . . . 5 ⊢ (((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (0 < 1 ∧ 0 ≤ 𝐴)) → 0 < (1 + 𝐴)) | |
| 10 | 1, 3, 6, 8, 9 | syl22anc 1251 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 0 < (1 + 𝐴)) |
| 11 | 4, 10 | elrpd 9828 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (1 + 𝐴) ∈ ℝ+) |
| 12 | fvconst2g 5808 | . . 3 ⊢ (((1 + 𝐴) ∈ ℝ+ ∧ 𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) = (1 + 𝐴)) | |
| 13 | 11, 12 | sylancom 420 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) = (1 + 𝐴)) |
| 14 | 13, 11 | eqeltrd 2283 | 1 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) ∈ ℝ+) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 {csn 3635 class class class wbr 4048 × cxp 4678 ‘cfv 5277 (class class class)co 5954 ℝcr 7937 0cc0 7938 1c1 7939 + caddc 7941 < clt 8120 ≤ cle 8121 ℕcn 9049 ℝ+crp 9788 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-addass 8040 ax-i2m1 8043 ax-0lt1 8044 ax-0id 8046 ax-rnegex 8047 ax-pre-ltwlin 8051 ax-pre-ltadd 8054 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-fv 5285 df-ov 5957 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-rp 9789 |
| This theorem is referenced by: resqrexlemf 11368 resqrexlemf1 11369 resqrexlemfp1 11370 |
| Copyright terms: Public domain | W3C validator |