ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlem1arp GIF version

Theorem resqrexlem1arp 10982
Description: Lemma for resqrex 11003. 1 + 𝐴 is a positive real (expressed in a way that will help apply seqf 10431 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
Hypotheses
Ref Expression
resqrexlem1arp.a (𝜑𝐴 ∈ ℝ)
resqrexlem1arp.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlem1arp ((𝜑𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) ∈ ℝ+)

Proof of Theorem resqrexlem1arp
StepHypRef Expression
1 1red 7947 . . . . 5 ((𝜑𝑁 ∈ ℕ) → 1 ∈ ℝ)
2 resqrexlem1arp.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
32adantr 276 . . . . 5 ((𝜑𝑁 ∈ ℕ) → 𝐴 ∈ ℝ)
41, 3readdcld 7961 . . . 4 ((𝜑𝑁 ∈ ℕ) → (1 + 𝐴) ∈ ℝ)
5 0lt1 8058 . . . . . 6 0 < 1
65a1i 9 . . . . 5 ((𝜑𝑁 ∈ ℕ) → 0 < 1)
7 resqrexlem1arp.agt0 . . . . . 6 (𝜑 → 0 ≤ 𝐴)
87adantr 276 . . . . 5 ((𝜑𝑁 ∈ ℕ) → 0 ≤ 𝐴)
9 addgtge0 8381 . . . . 5 (((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (0 < 1 ∧ 0 ≤ 𝐴)) → 0 < (1 + 𝐴))
101, 3, 6, 8, 9syl22anc 1239 . . . 4 ((𝜑𝑁 ∈ ℕ) → 0 < (1 + 𝐴))
114, 10elrpd 9664 . . 3 ((𝜑𝑁 ∈ ℕ) → (1 + 𝐴) ∈ ℝ+)
12 fvconst2g 5722 . . 3 (((1 + 𝐴) ∈ ℝ+𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) = (1 + 𝐴))
1311, 12sylancom 420 . 2 ((𝜑𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) = (1 + 𝐴))
1413, 11eqeltrd 2252 1 ((𝜑𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) ∈ ℝ+)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2146  {csn 3589   class class class wbr 3998   × cxp 4618  cfv 5208  (class class class)co 5865  cr 7785  0cc0 7786  1c1 7787   + caddc 7789   < clt 7966  cle 7967  cn 8892  +crp 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-pre-ltwlin 7899  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-ov 5868  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-rp 9625
This theorem is referenced by:  resqrexlemf  10984  resqrexlemf1  10985  resqrexlemfp1  10986
  Copyright terms: Public domain W3C validator