![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ressbasd | GIF version |
Description: Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (Proof shortened by AV, 7-Nov-2024.) |
Ref | Expression |
---|---|
ressbasd.r | β’ (π β π = (π βΎs π΄)) |
ressbasd.b | β’ (π β π΅ = (Baseβπ)) |
ressbasd.w | β’ (π β π β π) |
ressbasd.a | β’ (π β π΄ β π) |
Ref | Expression |
---|---|
ressbasd | β’ (π β (π΄ β© π΅) = (Baseβπ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressbasd.w | . . 3 β’ (π β π β π) | |
2 | ressbasd.a | . . . 4 β’ (π β π΄ β π) | |
3 | inex1g 4153 | . . . 4 β’ (π΄ β π β (π΄ β© (Baseβπ)) β V) | |
4 | 2, 3 | syl 14 | . . 3 β’ (π β (π΄ β© (Baseβπ)) β V) |
5 | baseslid 12536 | . . . 4 β’ (Base = Slot (Baseβndx) β§ (Baseβndx) β β) | |
6 | 5 | setsslid 12530 | . . 3 β’ ((π β π β§ (π΄ β© (Baseβπ)) β V) β (π΄ β© (Baseβπ)) = (Baseβ(π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©))) |
7 | 1, 4, 6 | syl2anc 411 | . 2 β’ (π β (π΄ β© (Baseβπ)) = (Baseβ(π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©))) |
8 | ressbasd.b | . . 3 β’ (π β π΅ = (Baseβπ)) | |
9 | 8 | ineq2d 3350 | . 2 β’ (π β (π΄ β© π΅) = (π΄ β© (Baseβπ))) |
10 | ressbasd.r | . . . 4 β’ (π β π = (π βΎs π΄)) | |
11 | ressvalsets 12541 | . . . . 5 β’ ((π β π β§ π΄ β π) β (π βΎs π΄) = (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©)) | |
12 | 1, 2, 11 | syl2anc 411 | . . . 4 β’ (π β (π βΎs π΄) = (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©)) |
13 | 10, 12 | eqtrd 2221 | . . 3 β’ (π β π = (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©)) |
14 | 13 | fveq2d 5533 | . 2 β’ (π β (Baseβπ ) = (Baseβ(π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©))) |
15 | 7, 9, 14 | 3eqtr4d 2231 | 1 β’ (π β (π΄ β© π΅) = (Baseβπ )) |
Colors of variables: wff set class |
Syntax hints: β wi 4 = wceq 1363 β wcel 2159 Vcvv 2751 β© cin 3142 β¨cop 3609 βcfv 5230 (class class class)co 5890 ndxcnx 12476 sSet csts 12477 Basecbs 12479 βΎs cress 12480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2161 ax-14 2162 ax-ext 2170 ax-sep 4135 ax-pow 4188 ax-pr 4223 ax-un 4447 ax-setind 4550 ax-cnex 7919 ax-resscn 7920 ax-1re 7922 ax-addrcl 7925 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2040 df-mo 2041 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ne 2360 df-ral 2472 df-rex 2473 df-rab 2476 df-v 2753 df-sbc 2977 df-dif 3145 df-un 3147 df-in 3149 df-ss 3156 df-nul 3437 df-pw 3591 df-sn 3612 df-pr 3613 df-op 3615 df-uni 3824 df-int 3859 df-br 4018 df-opab 4079 df-mpt 4080 df-id 4307 df-xp 4646 df-rel 4647 df-cnv 4648 df-co 4649 df-dm 4650 df-rn 4651 df-res 4652 df-iota 5192 df-fun 5232 df-fv 5238 df-ov 5893 df-oprab 5894 df-mpo 5895 df-inn 8937 df-ndx 12482 df-slot 12483 df-base 12485 df-sets 12486 df-iress 12487 |
This theorem is referenced by: ressbas2d 12545 ressbasssd 12546 ressbasid 12547 ressressg 12552 grpressid 12970 opprsubgg 13394 subrngpropd 13523 subrgpropd 13555 sralmod 13726 lidlbas 13754 |
Copyright terms: Public domain | W3C validator |