| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ressbasd | GIF version | ||
| Description: Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (Proof shortened by AV, 7-Nov-2024.) | 
| Ref | Expression | 
|---|---|
| ressbasd.r | ⊢ (𝜑 → 𝑅 = (𝑊 ↾s 𝐴)) | 
| ressbasd.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) | 
| ressbasd.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) | 
| ressbasd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| Ref | Expression | 
|---|---|
| ressbasd | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ressbasd.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
| 2 | ressbasd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | inex1g 4169 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ (Base‘𝑊)) ∈ V) | |
| 4 | 2, 3 | syl 14 | . . 3 ⊢ (𝜑 → (𝐴 ∩ (Base‘𝑊)) ∈ V) | 
| 5 | baseslid 12735 | . . . 4 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
| 6 | 5 | setsslid 12729 | . . 3 ⊢ ((𝑊 ∈ 𝑋 ∧ (𝐴 ∩ (Base‘𝑊)) ∈ V) → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) | 
| 7 | 1, 4, 6 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) | 
| 8 | ressbasd.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) | |
| 9 | 8 | ineq2d 3364 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = (𝐴 ∩ (Base‘𝑊))) | 
| 10 | ressbasd.r | . . . 4 ⊢ (𝜑 → 𝑅 = (𝑊 ↾s 𝐴)) | |
| 11 | ressvalsets 12742 | . . . . 5 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) | |
| 12 | 1, 2, 11 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) | 
| 13 | 10, 12 | eqtrd 2229 | . . 3 ⊢ (𝜑 → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) | 
| 14 | 13 | fveq2d 5562 | . 2 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) | 
| 15 | 7, 9, 14 | 3eqtr4d 2239 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∩ cin 3156 〈cop 3625 ‘cfv 5258 (class class class)co 5922 ndxcnx 12675 sSet csts 12676 Basecbs 12678 ↾s cress 12679 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-inn 8991 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 | 
| This theorem is referenced by: ressbas2d 12746 ressbasssd 12747 ressbasid 12748 ressressg 12753 grpressid 13193 opprsubgg 13640 subrngpropd 13772 subrgpropd 13809 sralmod 14006 lidlbas 14034 | 
| Copyright terms: Public domain | W3C validator |