| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ressbasd | GIF version | ||
| Description: Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (Proof shortened by AV, 7-Nov-2024.) |
| Ref | Expression |
|---|---|
| ressbasd.r | ⊢ (𝜑 → 𝑅 = (𝑊 ↾s 𝐴)) |
| ressbasd.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) |
| ressbasd.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
| ressbasd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| ressbasd | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressbasd.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
| 2 | ressbasd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | inex1g 4219 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ (Base‘𝑊)) ∈ V) | |
| 4 | 2, 3 | syl 14 | . . 3 ⊢ (𝜑 → (𝐴 ∩ (Base‘𝑊)) ∈ V) |
| 5 | baseslid 13076 | . . . 4 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
| 6 | 5 | setsslid 13069 | . . 3 ⊢ ((𝑊 ∈ 𝑋 ∧ (𝐴 ∩ (Base‘𝑊)) ∈ V) → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
| 7 | 1, 4, 6 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
| 8 | ressbasd.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) | |
| 9 | 8 | ineq2d 3405 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = (𝐴 ∩ (Base‘𝑊))) |
| 10 | ressbasd.r | . . . 4 ⊢ (𝜑 → 𝑅 = (𝑊 ↾s 𝐴)) | |
| 11 | ressvalsets 13083 | . . . . 5 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) | |
| 12 | 1, 2, 11 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
| 13 | 10, 12 | eqtrd 2262 | . . 3 ⊢ (𝜑 → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
| 14 | 13 | fveq2d 5627 | . 2 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
| 15 | 7, 9, 14 | 3eqtr4d 2272 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∩ cin 3196 〈cop 3669 ‘cfv 5314 (class class class)co 5994 ndxcnx 13015 sSet csts 13016 Basecbs 13018 ↾s cress 13019 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1re 8081 ax-addrcl 8084 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-iota 5274 df-fun 5316 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-inn 9099 df-ndx 13021 df-slot 13022 df-base 13024 df-sets 13025 df-iress 13026 |
| This theorem is referenced by: ressbas2d 13087 ressbasssd 13088 ressbasid 13089 ressressg 13094 grpressid 13580 opprsubgg 14033 subrngpropd 14165 subrgpropd 14202 sralmod 14399 lidlbas 14427 |
| Copyright terms: Public domain | W3C validator |