ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressbasd GIF version

Theorem ressbasd 13086
Description: Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (Proof shortened by AV, 7-Nov-2024.)
Hypotheses
Ref Expression
ressbasd.r (𝜑𝑅 = (𝑊s 𝐴))
ressbasd.b (𝜑𝐵 = (Base‘𝑊))
ressbasd.w (𝜑𝑊𝑋)
ressbasd.a (𝜑𝐴𝑉)
Assertion
Ref Expression
ressbasd (𝜑 → (𝐴𝐵) = (Base‘𝑅))

Proof of Theorem ressbasd
StepHypRef Expression
1 ressbasd.w . . 3 (𝜑𝑊𝑋)
2 ressbasd.a . . . 4 (𝜑𝐴𝑉)
3 inex1g 4219 . . . 4 (𝐴𝑉 → (𝐴 ∩ (Base‘𝑊)) ∈ V)
42, 3syl 14 . . 3 (𝜑 → (𝐴 ∩ (Base‘𝑊)) ∈ V)
5 baseslid 13076 . . . 4 (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ)
65setsslid 13069 . . 3 ((𝑊𝑋 ∧ (𝐴 ∩ (Base‘𝑊)) ∈ V) → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)))
71, 4, 6syl2anc 411 . 2 (𝜑 → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)))
8 ressbasd.b . . 3 (𝜑𝐵 = (Base‘𝑊))
98ineq2d 3405 . 2 (𝜑 → (𝐴𝐵) = (𝐴 ∩ (Base‘𝑊)))
10 ressbasd.r . . . 4 (𝜑𝑅 = (𝑊s 𝐴))
11 ressvalsets 13083 . . . . 5 ((𝑊𝑋𝐴𝑉) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
121, 2, 11syl2anc 411 . . . 4 (𝜑 → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
1310, 12eqtrd 2262 . . 3 (𝜑𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
1413fveq2d 5627 . 2 (𝜑 → (Base‘𝑅) = (Base‘(𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)))
157, 9, 143eqtr4d 2272 1 (𝜑 → (𝐴𝐵) = (Base‘𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  Vcvv 2799  cin 3196  cop 3669  cfv 5314  (class class class)co 5994  ndxcnx 13015   sSet csts 13016  Basecbs 13018  s cress 13019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-iota 5274  df-fun 5316  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-inn 9099  df-ndx 13021  df-slot 13022  df-base 13024  df-sets 13025  df-iress 13026
This theorem is referenced by:  ressbas2d  13087  ressbasssd  13088  ressbasid  13089  ressressg  13094  grpressid  13580  opprsubgg  14033  subrngpropd  14165  subrgpropd  14202  sralmod  14399  lidlbas  14427
  Copyright terms: Public domain W3C validator