| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ressbas2d | Unicode version | ||
| Description: Base set of a structure restriction. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| ressbasd.r |
|
| ressbasd.b |
|
| ressbasd.w |
|
| ressbas2d.ss |
|
| Ref | Expression |
|---|---|
| ressbas2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressbas2d.ss |
. . 3
| |
| 2 | df-ss 3210 |
. . 3
| |
| 3 | 1, 2 | sylib 122 |
. 2
|
| 4 | ressbasd.r |
. . 3
| |
| 5 | ressbasd.b |
. . 3
| |
| 6 | ressbasd.w |
. . 3
| |
| 7 | basfn 13086 |
. . . . . 6
| |
| 8 | 6 | elexd 2813 |
. . . . . 6
|
| 9 | funfvex 5643 |
. . . . . . 7
| |
| 10 | 9 | funfni 5422 |
. . . . . 6
|
| 11 | 7, 8, 10 | sylancr 414 |
. . . . 5
|
| 12 | 5, 11 | eqeltrd 2306 |
. . . 4
|
| 13 | 12, 1 | ssexd 4223 |
. . 3
|
| 14 | 4, 5, 6, 13 | ressbasd 13095 |
. 2
|
| 15 | 3, 14 | eqtr3d 2264 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-inn 9107 df-ndx 13030 df-slot 13031 df-base 13033 df-sets 13034 df-iress 13035 |
| This theorem is referenced by: gsumress 13423 issubmnd 13470 ress0g 13471 submbas 13509 resmhm 13515 subgbas 13710 issubg2m 13721 resghm 13792 ablressid 13867 rngressid 13912 ringidss 13987 ringressid 14021 unitgrpbasd 14073 islss3 14337 lsslss 14339 lsslsp 14387 2idlbas 14473 zringbas 14554 expghmap 14565 mplbascoe 14649 |
| Copyright terms: Public domain | W3C validator |