ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressbas2d Unicode version

Theorem ressbas2d 12900
Description: Base set of a structure restriction. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
ressbasd.r  |-  ( ph  ->  R  =  ( Ws  A ) )
ressbasd.b  |-  ( ph  ->  B  =  ( Base `  W ) )
ressbasd.w  |-  ( ph  ->  W  e.  X )
ressbas2d.ss  |-  ( ph  ->  A  C_  B )
Assertion
Ref Expression
ressbas2d  |-  ( ph  ->  A  =  ( Base `  R ) )

Proof of Theorem ressbas2d
StepHypRef Expression
1 ressbas2d.ss . . 3  |-  ( ph  ->  A  C_  B )
2 df-ss 3179 . . 3  |-  ( A 
C_  B  <->  ( A  i^i  B )  =  A )
31, 2sylib 122 . 2  |-  ( ph  ->  ( A  i^i  B
)  =  A )
4 ressbasd.r . . 3  |-  ( ph  ->  R  =  ( Ws  A ) )
5 ressbasd.b . . 3  |-  ( ph  ->  B  =  ( Base `  W ) )
6 ressbasd.w . . 3  |-  ( ph  ->  W  e.  X )
7 basfn 12890 . . . . . 6  |-  Base  Fn  _V
86elexd 2785 . . . . . 6  |-  ( ph  ->  W  e.  _V )
9 funfvex 5593 . . . . . . 7  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
109funfni 5376 . . . . . 6  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
117, 8, 10sylancr 414 . . . . 5  |-  ( ph  ->  ( Base `  W
)  e.  _V )
125, 11eqeltrd 2282 . . . 4  |-  ( ph  ->  B  e.  _V )
1312, 1ssexd 4184 . . 3  |-  ( ph  ->  A  e.  _V )
144, 5, 6, 13ressbasd 12899 . 2  |-  ( ph  ->  ( A  i^i  B
)  =  ( Base `  R ) )
153, 14eqtr3d 2240 1  |-  ( ph  ->  A  =  ( Base `  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   _Vcvv 2772    i^i cin 3165    C_ wss 3166    Fn wfn 5266   ` cfv 5271  (class class class)co 5944   Basecbs 12832   ↾s cress 12833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-inn 9037  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840
This theorem is referenced by:  gsumress  13227  issubmnd  13274  ress0g  13275  submbas  13313  resmhm  13319  subgbas  13514  issubg2m  13525  resghm  13596  ablressid  13671  rngressid  13716  ringidss  13791  ringressid  13825  unitgrpbasd  13877  islss3  14141  lsslss  14143  lsslsp  14191  2idlbas  14277  zringbas  14358  expghmap  14369  mplbascoe  14453
  Copyright terms: Public domain W3C validator