ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressbas2d Unicode version

Theorem ressbas2d 13015
Description: Base set of a structure restriction. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
ressbasd.r  |-  ( ph  ->  R  =  ( Ws  A ) )
ressbasd.b  |-  ( ph  ->  B  =  ( Base `  W ) )
ressbasd.w  |-  ( ph  ->  W  e.  X )
ressbas2d.ss  |-  ( ph  ->  A  C_  B )
Assertion
Ref Expression
ressbas2d  |-  ( ph  ->  A  =  ( Base `  R ) )

Proof of Theorem ressbas2d
StepHypRef Expression
1 ressbas2d.ss . . 3  |-  ( ph  ->  A  C_  B )
2 df-ss 3187 . . 3  |-  ( A 
C_  B  <->  ( A  i^i  B )  =  A )
31, 2sylib 122 . 2  |-  ( ph  ->  ( A  i^i  B
)  =  A )
4 ressbasd.r . . 3  |-  ( ph  ->  R  =  ( Ws  A ) )
5 ressbasd.b . . 3  |-  ( ph  ->  B  =  ( Base `  W ) )
6 ressbasd.w . . 3  |-  ( ph  ->  W  e.  X )
7 basfn 13005 . . . . . 6  |-  Base  Fn  _V
86elexd 2790 . . . . . 6  |-  ( ph  ->  W  e.  _V )
9 funfvex 5616 . . . . . . 7  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
109funfni 5395 . . . . . 6  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
117, 8, 10sylancr 414 . . . . 5  |-  ( ph  ->  ( Base `  W
)  e.  _V )
125, 11eqeltrd 2284 . . . 4  |-  ( ph  ->  B  e.  _V )
1312, 1ssexd 4200 . . 3  |-  ( ph  ->  A  e.  _V )
144, 5, 6, 13ressbasd 13014 . 2  |-  ( ph  ->  ( A  i^i  B
)  =  ( Base `  R ) )
153, 14eqtr3d 2242 1  |-  ( ph  ->  A  =  ( Base `  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   _Vcvv 2776    i^i cin 3173    C_ wss 3174    Fn wfn 5285   ` cfv 5290  (class class class)co 5967   Basecbs 12947   ↾s cress 12948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-inn 9072  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955
This theorem is referenced by:  gsumress  13342  issubmnd  13389  ress0g  13390  submbas  13428  resmhm  13434  subgbas  13629  issubg2m  13640  resghm  13711  ablressid  13786  rngressid  13831  ringidss  13906  ringressid  13940  unitgrpbasd  13992  islss3  14256  lsslss  14258  lsslsp  14306  2idlbas  14392  zringbas  14473  expghmap  14484  mplbascoe  14568
  Copyright terms: Public domain W3C validator