ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressbas2d Unicode version

Theorem ressbas2d 12871
Description: Base set of a structure restriction. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
ressbasd.r  |-  ( ph  ->  R  =  ( Ws  A ) )
ressbasd.b  |-  ( ph  ->  B  =  ( Base `  W ) )
ressbasd.w  |-  ( ph  ->  W  e.  X )
ressbas2d.ss  |-  ( ph  ->  A  C_  B )
Assertion
Ref Expression
ressbas2d  |-  ( ph  ->  A  =  ( Base `  R ) )

Proof of Theorem ressbas2d
StepHypRef Expression
1 ressbas2d.ss . . 3  |-  ( ph  ->  A  C_  B )
2 df-ss 3178 . . 3  |-  ( A 
C_  B  <->  ( A  i^i  B )  =  A )
31, 2sylib 122 . 2  |-  ( ph  ->  ( A  i^i  B
)  =  A )
4 ressbasd.r . . 3  |-  ( ph  ->  R  =  ( Ws  A ) )
5 ressbasd.b . . 3  |-  ( ph  ->  B  =  ( Base `  W ) )
6 ressbasd.w . . 3  |-  ( ph  ->  W  e.  X )
7 basfn 12861 . . . . . 6  |-  Base  Fn  _V
86elexd 2784 . . . . . 6  |-  ( ph  ->  W  e.  _V )
9 funfvex 5592 . . . . . . 7  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
109funfni 5375 . . . . . 6  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
117, 8, 10sylancr 414 . . . . 5  |-  ( ph  ->  ( Base `  W
)  e.  _V )
125, 11eqeltrd 2281 . . . 4  |-  ( ph  ->  B  e.  _V )
1312, 1ssexd 4183 . . 3  |-  ( ph  ->  A  e.  _V )
144, 5, 6, 13ressbasd 12870 . 2  |-  ( ph  ->  ( A  i^i  B
)  =  ( Base `  R ) )
153, 14eqtr3d 2239 1  |-  ( ph  ->  A  =  ( Base `  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175   _Vcvv 2771    i^i cin 3164    C_ wss 3165    Fn wfn 5265   ` cfv 5270  (class class class)co 5943   Basecbs 12803   ↾s cress 12804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-inn 9036  df-ndx 12806  df-slot 12807  df-base 12809  df-sets 12810  df-iress 12811
This theorem is referenced by:  gsumress  13198  issubmnd  13245  ress0g  13246  submbas  13284  resmhm  13290  subgbas  13485  issubg2m  13496  resghm  13567  ablressid  13642  rngressid  13687  ringidss  13762  ringressid  13796  unitgrpbasd  13848  islss3  14112  lsslss  14114  lsslsp  14162  2idlbas  14248  zringbas  14329  expghmap  14340  mplbascoe  14424
  Copyright terms: Public domain W3C validator