ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressbas2d Unicode version

Theorem ressbas2d 13096
Description: Base set of a structure restriction. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
ressbasd.r  |-  ( ph  ->  R  =  ( Ws  A ) )
ressbasd.b  |-  ( ph  ->  B  =  ( Base `  W ) )
ressbasd.w  |-  ( ph  ->  W  e.  X )
ressbas2d.ss  |-  ( ph  ->  A  C_  B )
Assertion
Ref Expression
ressbas2d  |-  ( ph  ->  A  =  ( Base `  R ) )

Proof of Theorem ressbas2d
StepHypRef Expression
1 ressbas2d.ss . . 3  |-  ( ph  ->  A  C_  B )
2 df-ss 3210 . . 3  |-  ( A 
C_  B  <->  ( A  i^i  B )  =  A )
31, 2sylib 122 . 2  |-  ( ph  ->  ( A  i^i  B
)  =  A )
4 ressbasd.r . . 3  |-  ( ph  ->  R  =  ( Ws  A ) )
5 ressbasd.b . . 3  |-  ( ph  ->  B  =  ( Base `  W ) )
6 ressbasd.w . . 3  |-  ( ph  ->  W  e.  X )
7 basfn 13086 . . . . . 6  |-  Base  Fn  _V
86elexd 2813 . . . . . 6  |-  ( ph  ->  W  e.  _V )
9 funfvex 5643 . . . . . . 7  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
109funfni 5422 . . . . . 6  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
117, 8, 10sylancr 414 . . . . 5  |-  ( ph  ->  ( Base `  W
)  e.  _V )
125, 11eqeltrd 2306 . . . 4  |-  ( ph  ->  B  e.  _V )
1312, 1ssexd 4223 . . 3  |-  ( ph  ->  A  e.  _V )
144, 5, 6, 13ressbasd 13095 . 2  |-  ( ph  ->  ( A  i^i  B
)  =  ( Base `  R ) )
153, 14eqtr3d 2264 1  |-  ( ph  ->  A  =  ( Base `  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799    i^i cin 3196    C_ wss 3197    Fn wfn 5312   ` cfv 5317  (class class class)co 6000   Basecbs 13027   ↾s cress 13028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-inn 9107  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035
This theorem is referenced by:  gsumress  13423  issubmnd  13470  ress0g  13471  submbas  13509  resmhm  13515  subgbas  13710  issubg2m  13721  resghm  13792  ablressid  13867  rngressid  13912  ringidss  13987  ringressid  14021  unitgrpbasd  14073  islss3  14337  lsslss  14339  lsslsp  14387  2idlbas  14473  zringbas  14554  expghmap  14565  mplbascoe  14649
  Copyright terms: Public domain W3C validator