| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rlmvalg | Unicode version | ||
| Description: Value of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
| Ref | Expression |
|---|---|
| rlmvalg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rgmod 14394 |
. 2
| |
| 2 | fveq2 5626 |
. . 3
| |
| 3 | fveq2 5626 |
. . 3
| |
| 4 | 2, 3 | fveq12d 5633 |
. 2
|
| 5 | elex 2811 |
. 2
| |
| 6 | eqidd 2230 |
. . 3
| |
| 7 | ssidd 3245 |
. . 3
| |
| 8 | id 19 |
. . 3
| |
| 9 | 6, 7, 8 | sraex 14404 |
. 2
|
| 10 | 1, 4, 5, 9 | fvmptd3 5727 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-ndx 13030 df-slot 13031 df-base 13033 df-sets 13034 df-iress 13035 df-mulr 13119 df-sca 13121 df-vsca 13122 df-ip 13123 df-sra 14393 df-rgmod 14394 |
| This theorem is referenced by: rlmbasg 14413 rlmplusgg 14414 rlm0g 14415 rlmmulrg 14417 rlmscabas 14418 rlmvscag 14419 rlmtopng 14420 rlmdsg 14421 rlmlmod 14422 |
| Copyright terms: Public domain | W3C validator |