ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rlm0g Unicode version

Theorem rlm0g 14415
Description: Zero vector in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
Assertion
Ref Expression
rlm0g  |-  ( R  e.  V  ->  ( 0g `  R )  =  ( 0g `  (ringLMod `  R ) ) )

Proof of Theorem rlm0g
StepHypRef Expression
1 rlmvalg 14412 . 2  |-  ( R  e.  V  ->  (ringLMod `  R )  =  ( (subringAlg  `  R ) `  ( Base `  R )
) )
2 eqidd 2230 . 2  |-  ( R  e.  V  ->  ( 0g `  R )  =  ( 0g `  R
) )
3 ssidd 3245 . 2  |-  ( R  e.  V  ->  ( Base `  R )  C_  ( Base `  R )
)
4 id 19 . 2  |-  ( R  e.  V  ->  R  e.  V )
51, 2, 3, 4sralmod0g 14409 1  |-  ( R  e.  V  ->  ( 0g `  R )  =  ( 0g `  (ringLMod `  R ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   ` cfv 5317   Basecbs 13027   0gc0g 13284  ringLModcrglmod 14392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-mulr 13119  df-sca 13121  df-vsca 13122  df-ip 13123  df-0g 13286  df-sra 14393  df-rgmod 14394
This theorem is referenced by:  lidl0cl  14441  lidl0  14447  rsp0  14451
  Copyright terms: Public domain W3C validator