| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpge0d | GIF version | ||
| Description: A positive real is greater than or equal to zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpge0d | ⊢ (𝜑 → 0 ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | rpge0 9808 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 0 ≤ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 class class class wbr 4051 0cc0 7945 ≤ cle 8128 ℝ+crp 9795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 ax-rnegex 8054 ax-pre-ltirr 8057 ax-pre-lttrn 8059 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-xp 4689 df-cnv 4691 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-rp 9796 |
| This theorem is referenced by: rprege0d 9846 resqrexlemnm 11404 bdtrilem 11625 isumrpcl 11880 expcnvap0 11888 absgtap 11896 cvgratnnlemrate 11916 cvgratz 11918 4sqlem7 12782 ivthinclemlopn 15183 ivthinclemuopn 15185 limcimolemlt 15211 rpcxpsqrt 15469 rpabscxpbnd 15487 lgsquadlem2 15630 trilpolemclim 16116 trilpolemisumle 16118 trilpolemeq1 16120 trilpolemlt1 16121 nconstwlpolemgt0 16144 |
| Copyright terms: Public domain | W3C validator |