| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rpge0d | GIF version | ||
| Description: A positive real is greater than or equal to zero. (Contributed by Mario Carneiro, 28-May-2016.) | 
| Ref | Expression | 
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) | 
| Ref | Expression | 
|---|---|
| rpge0d | ⊢ (𝜑 → 0 ≤ 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | rpge0 9741 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 0 ≤ 𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∈ wcel 2167 class class class wbr 4033 0cc0 7879 ≤ cle 8062 ℝ+crp 9728 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-lttrn 7993 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-rp 9729 | 
| This theorem is referenced by: rprege0d 9779 resqrexlemnm 11183 bdtrilem 11404 isumrpcl 11659 expcnvap0 11667 absgtap 11675 cvgratnnlemrate 11695 cvgratz 11697 4sqlem7 12553 ivthinclemlopn 14872 ivthinclemuopn 14874 limcimolemlt 14900 rpcxpsqrt 15158 rpabscxpbnd 15176 lgsquadlem2 15319 trilpolemclim 15680 trilpolemisumle 15682 trilpolemeq1 15684 trilpolemlt1 15685 nconstwlpolemgt0 15708 | 
| Copyright terms: Public domain | W3C validator |