ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpge0d GIF version

Theorem rpge0d 9499
Description: A positive real is greater than or equal to zero. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rpred.1 (𝜑𝐴 ∈ ℝ+)
Assertion
Ref Expression
rpge0d (𝜑 → 0 ≤ 𝐴)

Proof of Theorem rpge0d
StepHypRef Expression
1 rpred.1 . 2 (𝜑𝐴 ∈ ℝ+)
2 rpge0 9466 . 2 (𝐴 ∈ ℝ+ → 0 ≤ 𝐴)
31, 2syl 14 1 (𝜑 → 0 ≤ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1480   class class class wbr 3929  0cc0 7632  cle 7813  +crp 9453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-1re 7726  ax-addrcl 7729  ax-rnegex 7741  ax-pre-ltirr 7744  ax-pre-lttrn 7746
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-xp 4545  df-cnv 4547  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-rp 9454
This theorem is referenced by:  rprege0d  9503  resqrexlemnm  10802  bdtrilem  11022  isumrpcl  11275  expcnvap0  11283  absgtap  11291  cvgratnnlemrate  11311  cvgratz  11313  ivthinclemlopn  12797  ivthinclemuopn  12799  limcimolemlt  12816  trilpolemclim  13290  trilpolemisumle  13292  trilpolemeq1  13294  trilpolemlt1  13295
  Copyright terms: Public domain W3C validator