| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > scafvalg | GIF version | ||
| Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| scaffval.b | ⊢ 𝐵 = (Base‘𝑊) |
| scaffval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| scaffval.k | ⊢ 𝐾 = (Base‘𝐹) |
| scaffval.a | ⊢ ∙ = ( ·sf ‘𝑊) |
| scaffval.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| Ref | Expression |
|---|---|
| scafvalg | ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∙ 𝑌) = (𝑋 · 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scaffval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
| 2 | scaffval.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | scaffval.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
| 4 | scaffval.a | . . . 4 ⊢ ∙ = ( ·sf ‘𝑊) | |
| 5 | scaffval.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | scaffvalg 14118 | . . 3 ⊢ (𝑊 ∈ 𝑉 → ∙ = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥 · 𝑦))) |
| 7 | 6 | 3ad2ant1 1021 | . 2 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → ∙ = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥 · 𝑦))) |
| 8 | oveq12 5963 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 · 𝑦) = (𝑋 · 𝑌)) | |
| 9 | 8 | adantl 277 | . 2 ⊢ (((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥 · 𝑦) = (𝑋 · 𝑌)) |
| 10 | simp2 1001 | . 2 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐾) | |
| 11 | simp3 1002 | . 2 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 12 | vscaslid 13045 | . . . . . 6 ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) | |
| 13 | 12 | slotex 12909 | . . . . 5 ⊢ (𝑊 ∈ 𝑉 → ( ·𝑠 ‘𝑊) ∈ V) |
| 14 | 5, 13 | eqeltrid 2293 | . . . 4 ⊢ (𝑊 ∈ 𝑉 → · ∈ V) |
| 15 | 14 | 3ad2ant1 1021 | . . 3 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → · ∈ V) |
| 16 | ovexg 5988 | . . 3 ⊢ ((𝑋 ∈ 𝐾 ∧ · ∈ V ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ V) | |
| 17 | 10, 15, 11, 16 | syl3anc 1250 | . 2 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ V) |
| 18 | 7, 9, 10, 11, 17 | ovmpod 6083 | 1 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∙ 𝑌) = (𝑋 · 𝑌)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ‘cfv 5277 (class class class)co 5954 ∈ cmpo 5956 Basecbs 12882 Scalarcsca 12962 ·𝑠 cvsca 12963 ·sf cscaf 14100 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1re 8032 ax-addrcl 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-inn 9050 df-2 9108 df-3 9109 df-4 9110 df-5 9111 df-6 9112 df-ndx 12885 df-slot 12886 df-base 12888 df-sca 12975 df-vsca 12976 df-scaf 14102 |
| This theorem is referenced by: lmodfopne 14138 |
| Copyright terms: Public domain | W3C validator |