ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  scafvalg GIF version

Theorem scafvalg 13863
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
scaffval.b 𝐵 = (Base‘𝑊)
scaffval.f 𝐹 = (Scalar‘𝑊)
scaffval.k 𝐾 = (Base‘𝐹)
scaffval.a = ( ·sf𝑊)
scaffval.s · = ( ·𝑠𝑊)
Assertion
Ref Expression
scafvalg ((𝑊𝑉𝑋𝐾𝑌𝐵) → (𝑋 𝑌) = (𝑋 · 𝑌))

Proof of Theorem scafvalg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scaffval.b . . . 4 𝐵 = (Base‘𝑊)
2 scaffval.f . . . 4 𝐹 = (Scalar‘𝑊)
3 scaffval.k . . . 4 𝐾 = (Base‘𝐹)
4 scaffval.a . . . 4 = ( ·sf𝑊)
5 scaffval.s . . . 4 · = ( ·𝑠𝑊)
61, 2, 3, 4, 5scaffvalg 13862 . . 3 (𝑊𝑉 = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
763ad2ant1 1020 . 2 ((𝑊𝑉𝑋𝐾𝑌𝐵) → = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
8 oveq12 5931 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥 · 𝑦) = (𝑋 · 𝑌))
98adantl 277 . 2 (((𝑊𝑉𝑋𝐾𝑌𝐵) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑥 · 𝑦) = (𝑋 · 𝑌))
10 simp2 1000 . 2 ((𝑊𝑉𝑋𝐾𝑌𝐵) → 𝑋𝐾)
11 simp3 1001 . 2 ((𝑊𝑉𝑋𝐾𝑌𝐵) → 𝑌𝐵)
12 vscaslid 12840 . . . . . 6 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
1312slotex 12705 . . . . 5 (𝑊𝑉 → ( ·𝑠𝑊) ∈ V)
145, 13eqeltrid 2283 . . . 4 (𝑊𝑉· ∈ V)
15143ad2ant1 1020 . . 3 ((𝑊𝑉𝑋𝐾𝑌𝐵) → · ∈ V)
16 ovexg 5956 . . 3 ((𝑋𝐾· ∈ V ∧ 𝑌𝐵) → (𝑋 · 𝑌) ∈ V)
1710, 15, 11, 16syl3anc 1249 . 2 ((𝑊𝑉𝑋𝐾𝑌𝐵) → (𝑋 · 𝑌) ∈ V)
187, 9, 10, 11, 17ovmpod 6050 1 ((𝑊𝑉𝑋𝐾𝑌𝐵) → (𝑋 𝑌) = (𝑋 · 𝑌))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  Vcvv 2763  cfv 5258  (class class class)co 5922  cmpo 5924  Basecbs 12678  Scalarcsca 12758   ·𝑠 cvsca 12759   ·sf cscaf 13844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-ndx 12681  df-slot 12682  df-base 12684  df-sca 12771  df-vsca 12772  df-scaf 13846
This theorem is referenced by:  lmodfopne  13882
  Copyright terms: Public domain W3C validator