ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  scafvalg GIF version

Theorem scafvalg 14256
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
scaffval.b 𝐵 = (Base‘𝑊)
scaffval.f 𝐹 = (Scalar‘𝑊)
scaffval.k 𝐾 = (Base‘𝐹)
scaffval.a = ( ·sf𝑊)
scaffval.s · = ( ·𝑠𝑊)
Assertion
Ref Expression
scafvalg ((𝑊𝑉𝑋𝐾𝑌𝐵) → (𝑋 𝑌) = (𝑋 · 𝑌))

Proof of Theorem scafvalg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scaffval.b . . . 4 𝐵 = (Base‘𝑊)
2 scaffval.f . . . 4 𝐹 = (Scalar‘𝑊)
3 scaffval.k . . . 4 𝐾 = (Base‘𝐹)
4 scaffval.a . . . 4 = ( ·sf𝑊)
5 scaffval.s . . . 4 · = ( ·𝑠𝑊)
61, 2, 3, 4, 5scaffvalg 14255 . . 3 (𝑊𝑉 = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
763ad2ant1 1042 . 2 ((𝑊𝑉𝑋𝐾𝑌𝐵) → = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
8 oveq12 6003 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥 · 𝑦) = (𝑋 · 𝑌))
98adantl 277 . 2 (((𝑊𝑉𝑋𝐾𝑌𝐵) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑥 · 𝑦) = (𝑋 · 𝑌))
10 simp2 1022 . 2 ((𝑊𝑉𝑋𝐾𝑌𝐵) → 𝑋𝐾)
11 simp3 1023 . 2 ((𝑊𝑉𝑋𝐾𝑌𝐵) → 𝑌𝐵)
12 vscaslid 13182 . . . . . 6 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
1312slotex 13045 . . . . 5 (𝑊𝑉 → ( ·𝑠𝑊) ∈ V)
145, 13eqeltrid 2316 . . . 4 (𝑊𝑉· ∈ V)
15143ad2ant1 1042 . . 3 ((𝑊𝑉𝑋𝐾𝑌𝐵) → · ∈ V)
16 ovexg 6028 . . 3 ((𝑋𝐾· ∈ V ∧ 𝑌𝐵) → (𝑋 · 𝑌) ∈ V)
1710, 15, 11, 16syl3anc 1271 . 2 ((𝑊𝑉𝑋𝐾𝑌𝐵) → (𝑋 · 𝑌) ∈ V)
187, 9, 10, 11, 17ovmpod 6123 1 ((𝑊𝑉𝑋𝐾𝑌𝐵) → (𝑋 𝑌) = (𝑋 · 𝑌))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  Vcvv 2799  cfv 5314  (class class class)co 5994  cmpo 5996  Basecbs 13018  Scalarcsca 13099   ·𝑠 cvsca 13100   ·sf cscaf 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-ndx 13021  df-slot 13022  df-base 13024  df-sca 13112  df-vsca 13113  df-scaf 14239
This theorem is referenced by:  lmodfopne  14275
  Copyright terms: Public domain W3C validator