![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > scafvalg | GIF version |
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
scaffval.b | β’ π΅ = (Baseβπ) |
scaffval.f | β’ πΉ = (Scalarβπ) |
scaffval.k | β’ πΎ = (BaseβπΉ) |
scaffval.a | β’ β = ( Β·sf βπ) |
scaffval.s | β’ Β· = ( Β·π βπ) |
Ref | Expression |
---|---|
scafvalg | β’ ((π β π β§ π β πΎ β§ π β π΅) β (π β π) = (π Β· π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scaffval.b | . . . 4 β’ π΅ = (Baseβπ) | |
2 | scaffval.f | . . . 4 β’ πΉ = (Scalarβπ) | |
3 | scaffval.k | . . . 4 β’ πΎ = (BaseβπΉ) | |
4 | scaffval.a | . . . 4 β’ β = ( Β·sf βπ) | |
5 | scaffval.s | . . . 4 β’ Β· = ( Β·π βπ) | |
6 | 1, 2, 3, 4, 5 | scaffvalg 13401 | . . 3 β’ (π β π β β = (π₯ β πΎ, π¦ β π΅ β¦ (π₯ Β· π¦))) |
7 | 6 | 3ad2ant1 1018 | . 2 β’ ((π β π β§ π β πΎ β§ π β π΅) β β = (π₯ β πΎ, π¦ β π΅ β¦ (π₯ Β· π¦))) |
8 | oveq12 5886 | . . 3 β’ ((π₯ = π β§ π¦ = π) β (π₯ Β· π¦) = (π Β· π)) | |
9 | 8 | adantl 277 | . 2 β’ (((π β π β§ π β πΎ β§ π β π΅) β§ (π₯ = π β§ π¦ = π)) β (π₯ Β· π¦) = (π Β· π)) |
10 | simp2 998 | . 2 β’ ((π β π β§ π β πΎ β§ π β π΅) β π β πΎ) | |
11 | simp3 999 | . 2 β’ ((π β π β§ π β πΎ β§ π β π΅) β π β π΅) | |
12 | vscaslid 12623 | . . . . . 6 β’ ( Β·π = Slot ( Β·π βndx) β§ ( Β·π βndx) β β) | |
13 | 12 | slotex 12491 | . . . . 5 β’ (π β π β ( Β·π βπ) β V) |
14 | 5, 13 | eqeltrid 2264 | . . . 4 β’ (π β π β Β· β V) |
15 | 14 | 3ad2ant1 1018 | . . 3 β’ ((π β π β§ π β πΎ β§ π β π΅) β Β· β V) |
16 | ovexg 5911 | . . 3 β’ ((π β πΎ β§ Β· β V β§ π β π΅) β (π Β· π) β V) | |
17 | 10, 15, 11, 16 | syl3anc 1238 | . 2 β’ ((π β π β§ π β πΎ β§ π β π΅) β (π Β· π) β V) |
18 | 7, 9, 10, 11, 17 | ovmpod 6004 | 1 β’ ((π β π β§ π β πΎ β§ π β π΅) β (π β π) = (π Β· π)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β§ w3a 978 = wceq 1353 β wcel 2148 Vcvv 2739 βcfv 5218 (class class class)co 5877 β cmpo 5879 Basecbs 12464 Scalarcsca 12541 Β·π cvsca 12542 Β·sf cscaf 13383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1re 7907 ax-addrcl 7910 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-5 8983 df-6 8984 df-ndx 12467 df-slot 12468 df-base 12470 df-sca 12554 df-vsca 12555 df-scaf 13385 |
This theorem is referenced by: lmodfopne 13421 |
Copyright terms: Public domain | W3C validator |