ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftcan1 Unicode version

Theorem shftcan1 11260
Description: Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1  |-  F  e. 
_V
Assertion
Ref Expression
shftcan1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( F 
shift  A )  shift  -u A
) `  B )  =  ( F `  B ) )

Proof of Theorem shftcan1
StepHypRef Expression
1 negcl 8307 . . . . 5  |-  ( A  e.  CC  ->  -u A  e.  CC )
2 shftfval.1 . . . . . 6  |-  F  e. 
_V
322shfti 11257 . . . . 5  |-  ( ( A  e.  CC  /\  -u A  e.  CC )  ->  ( ( F 
shift  A )  shift  -u A
)  =  ( F 
shift  ( A  +  -u A ) ) )
41, 3mpdan 421 . . . 4  |-  ( A  e.  CC  ->  (
( F  shift  A ) 
shift  -u A )  =  ( F  shift  ( A  +  -u A ) ) )
5 negid 8354 . . . . 5  |-  ( A  e.  CC  ->  ( A  +  -u A )  =  0 )
65oveq2d 5983 . . . 4  |-  ( A  e.  CC  ->  ( F  shift  ( A  +  -u A ) )  =  ( F  shift  0 ) )
74, 6eqtrd 2240 . . 3  |-  ( A  e.  CC  ->  (
( F  shift  A ) 
shift  -u A )  =  ( F  shift  0 ) )
87fveq1d 5601 . 2  |-  ( A  e.  CC  ->  (
( ( F  shift  A )  shift  -u A ) `
 B )  =  ( ( F  shift  0 ) `  B ) )
92shftidt 11259 . 2  |-  ( B  e.  CC  ->  (
( F  shift  0 ) `
 B )  =  ( F `  B
) )
108, 9sylan9eq 2260 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( F 
shift  A )  shift  -u A
) `  B )  =  ( F `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   _Vcvv 2776   ` cfv 5290  (class class class)co 5967   CCcc 7958   0cc0 7960    + caddc 7963   -ucneg 8279    shift cshi 11240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-sub 8280  df-neg 8281  df-shft 11241
This theorem is referenced by:  shftcan2  11261  climshft  11730
  Copyright terms: Public domain W3C validator