ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negid Unicode version

Theorem negid 8275
Description: Addition of a number and its negative. (Contributed by NM, 14-Mar-2005.)
Assertion
Ref Expression
negid  |-  ( A  e.  CC  ->  ( A  +  -u A )  =  0 )

Proof of Theorem negid
StepHypRef Expression
1 df-neg 8202 . . 3  |-  -u A  =  ( 0  -  A )
21oveq2i 5934 . 2  |-  ( A  +  -u A )  =  ( A  +  ( 0  -  A ) )
3 0cn 8020 . . 3  |-  0  e.  CC
4 pncan3 8236 . . 3  |-  ( ( A  e.  CC  /\  0  e.  CC )  ->  ( A  +  ( 0  -  A ) )  =  0 )
53, 4mpan2 425 . 2  |-  ( A  e.  CC  ->  ( A  +  ( 0  -  A ) )  =  0 )
62, 5eqtrid 2241 1  |-  ( A  e.  CC  ->  ( A  +  -u A )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167  (class class class)co 5923   CCcc 7879   0cc0 7881    + caddc 7884    - cmin 8199   -ucneg 8200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-setind 4574  ax-resscn 7973  ax-1cn 7974  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-addcom 7981  ax-addass 7983  ax-distr 7985  ax-i2m1 7986  ax-0id 7989  ax-rnegex 7990  ax-cnre 7992
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-sub 8201  df-neg 8202
This theorem is referenced by:  negidi  8297  negidd  8329  eqneg  8761  eqreznegel  9690  shftcan1  11001  efcan  11843  sincossq  11915  cncrng  14135  cnfldneg  14139
  Copyright terms: Public domain W3C validator