| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > shftcan1 | GIF version | ||
| Description: Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) | 
| Ref | Expression | 
|---|---|
| shftfval.1 | ⊢ 𝐹 ∈ V | 
| Ref | Expression | 
|---|---|
| shftcan1 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift 𝐴) shift -𝐴)‘𝐵) = (𝐹‘𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | negcl 8226 | . . . . 5 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
| 2 | shftfval.1 | . . . . . 6 ⊢ 𝐹 ∈ V | |
| 3 | 2 | 2shfti 10996 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℂ) → ((𝐹 shift 𝐴) shift -𝐴) = (𝐹 shift (𝐴 + -𝐴))) | 
| 4 | 1, 3 | mpdan 421 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((𝐹 shift 𝐴) shift -𝐴) = (𝐹 shift (𝐴 + -𝐴))) | 
| 5 | negid 8273 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0) | |
| 6 | 5 | oveq2d 5938 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐹 shift (𝐴 + -𝐴)) = (𝐹 shift 0)) | 
| 7 | 4, 6 | eqtrd 2229 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐹 shift 𝐴) shift -𝐴) = (𝐹 shift 0)) | 
| 8 | 7 | fveq1d 5560 | . 2 ⊢ (𝐴 ∈ ℂ → (((𝐹 shift 𝐴) shift -𝐴)‘𝐵) = ((𝐹 shift 0)‘𝐵)) | 
| 9 | 2 | shftidt 10998 | . 2 ⊢ (𝐵 ∈ ℂ → ((𝐹 shift 0)‘𝐵) = (𝐹‘𝐵)) | 
| 10 | 8, 9 | sylan9eq 2249 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift 𝐴) shift -𝐴)‘𝐵) = (𝐹‘𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ‘cfv 5258 (class class class)co 5922 ℂcc 7877 0cc0 7879 + caddc 7882 -cneg 8198 shift cshi 10979 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sub 8199 df-neg 8200 df-shft 10980 | 
| This theorem is referenced by: shftcan2 11000 climshft 11469 | 
| Copyright terms: Public domain | W3C validator |