ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climshft Unicode version

Theorem climshft 11815
Description: A shifted function converges iff the original function converges. (Contributed by NM, 16-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
climshft  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( ( F  shift  M )  ~~>  A  <->  F  ~~>  A ) )

Proof of Theorem climshft
Dummy variables  f  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6008 . . . . . 6  |-  ( f  =  F  ->  (
f  shift  M )  =  ( F  shift  M ) )
21breq1d 4093 . . . . 5  |-  ( f  =  F  ->  (
( f  shift  M )  ~~>  A  <->  ( F  shift  M )  ~~>  A ) )
3 breq1 4086 . . . . 5  |-  ( f  =  F  ->  (
f  ~~>  A  <->  F  ~~>  A ) )
42, 3bibi12d 235 . . . 4  |-  ( f  =  F  ->  (
( ( f  shift  M )  ~~>  A  <->  f  ~~>  A )  <-> 
( ( F  shift  M )  ~~>  A  <->  F  ~~>  A ) ) )
54imbi2d 230 . . 3  |-  ( f  =  F  ->  (
( M  e.  ZZ  ->  ( ( f  shift  M )  ~~>  A  <->  f  ~~>  A ) )  <->  ( M  e.  ZZ  ->  ( ( F  shift  M )  ~~>  A  <->  F  ~~>  A ) ) ) )
6 znegcl 9477 . . . . . 6  |-  ( M  e.  ZZ  ->  -u M  e.  ZZ )
7 vex 2802 . . . . . . 7  |-  f  e. 
_V
8 zcn 9451 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  CC )
9 ovshftex 11330 . . . . . . 7  |-  ( ( f  e.  _V  /\  M  e.  CC )  ->  ( f  shift  M )  e.  _V )
107, 8, 9sylancr 414 . . . . . 6  |-  ( M  e.  ZZ  ->  (
f  shift  M )  e. 
_V )
11 climshftlemg 11813 . . . . . 6  |-  ( (
-u M  e.  ZZ  /\  ( f  shift  M )  e.  _V )  -> 
( ( f  shift  M )  ~~>  A  ->  (
( f  shift  M ) 
shift  -u M )  ~~>  A ) )
126, 10, 11syl2anc 411 . . . . 5  |-  ( M  e.  ZZ  ->  (
( f  shift  M )  ~~>  A  ->  ( (
f  shift  M )  shift  -u M )  ~~>  A ) )
13 eqid 2229 . . . . . 6  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
148negcld 8444 . . . . . . 7  |-  ( M  e.  ZZ  ->  -u M  e.  CC )
15 ovshftex 11330 . . . . . . 7  |-  ( ( ( f  shift  M )  e.  _V  /\  -u M  e.  CC )  ->  (
( f  shift  M ) 
shift  -u M )  e. 
_V )
1610, 14, 15syl2anc 411 . . . . . 6  |-  ( M  e.  ZZ  ->  (
( f  shift  M ) 
shift  -u M )  e. 
_V )
177a1i 9 . . . . . 6  |-  ( M  e.  ZZ  ->  f  e.  _V )
18 id 19 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  ZZ )
19 eluzelcn 9733 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  CC )
207shftcan1 11345 . . . . . . 7  |-  ( ( M  e.  CC  /\  k  e.  CC )  ->  ( ( ( f 
shift  M )  shift  -u M
) `  k )  =  ( f `  k ) )
218, 19, 20syl2an 289 . . . . . 6  |-  ( ( M  e.  ZZ  /\  k  e.  ( ZZ>= `  M ) )  -> 
( ( ( f 
shift  M )  shift  -u M
) `  k )  =  ( f `  k ) )
2213, 16, 17, 18, 21climeq 11810 . . . . 5  |-  ( M  e.  ZZ  ->  (
( ( f  shift  M )  shift  -u M )  ~~>  A  <->  f  ~~>  A ) )
2312, 22sylibd 149 . . . 4  |-  ( M  e.  ZZ  ->  (
( f  shift  M )  ~~>  A  ->  f  ~~>  A ) )
24 climshftlemg 11813 . . . . 5  |-  ( ( M  e.  ZZ  /\  f  e.  _V )  ->  ( f  ~~>  A  -> 
( f  shift  M )  ~~>  A ) )
257, 24mpan2 425 . . . 4  |-  ( M  e.  ZZ  ->  (
f  ~~>  A  ->  (
f  shift  M )  ~~>  A ) )
2623, 25impbid 129 . . 3  |-  ( M  e.  ZZ  ->  (
( f  shift  M )  ~~>  A  <->  f  ~~>  A ) )
275, 26vtoclg 2861 . 2  |-  ( F  e.  V  ->  ( M  e.  ZZ  ->  ( ( F  shift  M )  ~~>  A  <->  F  ~~>  A )
) )
2827impcom 125 1  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( ( F  shift  M )  ~~>  A  <->  F  ~~>  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   _Vcvv 2799   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   CCcc 7997   -ucneg 8318   ZZcz 9446   ZZ>=cuz 9722    shift cshi 11325    ~~> cli 11789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-shft 11326  df-clim 11790
This theorem is referenced by:  climshft2  11817  iser3shft  11857  eftlub  12201
  Copyright terms: Public domain W3C validator