ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftf Unicode version

Theorem shftf 11256
Description: Functionality of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1  |-  F  e. 
_V
Assertion
Ref Expression
shftf  |-  ( ( F : B --> C  /\  A  e.  CC )  ->  ( F  shift  A ) : { x  e.  CC  |  ( x  -  A )  e.  B } --> C )
Distinct variable groups:    x, A    x, F    x, B
Allowed substitution hint:    C( x)

Proof of Theorem shftf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ffn 5445 . . 3  |-  ( F : B --> C  ->  F  Fn  B )
2 shftfval.1 . . . 4  |-  F  e. 
_V
32shftfn 11250 . . 3  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  ( F  shift  A )  Fn  { x  e.  CC  |  ( x  -  A )  e.  B } )
41, 3sylan 283 . 2  |-  ( ( F : B --> C  /\  A  e.  CC )  ->  ( F  shift  A )  Fn  { x  e.  CC  |  ( x  -  A )  e.  B } )
5 oveq1 5974 . . . . . 6  |-  ( x  =  y  ->  (
x  -  A )  =  ( y  -  A ) )
65eleq1d 2276 . . . . 5  |-  ( x  =  y  ->  (
( x  -  A
)  e.  B  <->  ( y  -  A )  e.  B
) )
76elrab 2936 . . . 4  |-  ( y  e.  { x  e.  CC  |  ( x  -  A )  e.  B }  <->  ( y  e.  CC  /\  ( y  -  A )  e.  B ) )
8 simpr 110 . . . . . 6  |-  ( ( F : B --> C  /\  A  e.  CC )  ->  A  e.  CC )
9 simpl 109 . . . . . 6  |-  ( ( y  e.  CC  /\  ( y  -  A
)  e.  B )  ->  y  e.  CC )
102shftval 11251 . . . . . 6  |-  ( ( A  e.  CC  /\  y  e.  CC )  ->  ( ( F  shift  A ) `  y )  =  ( F `  ( y  -  A
) ) )
118, 9, 10syl2an 289 . . . . 5  |-  ( ( ( F : B --> C  /\  A  e.  CC )  /\  ( y  e.  CC  /\  ( y  -  A )  e.  B ) )  -> 
( ( F  shift  A ) `  y )  =  ( F `  ( y  -  A
) ) )
12 simpl 109 . . . . . 6  |-  ( ( F : B --> C  /\  A  e.  CC )  ->  F : B --> C )
13 simpr 110 . . . . . 6  |-  ( ( y  e.  CC  /\  ( y  -  A
)  e.  B )  ->  ( y  -  A )  e.  B
)
14 ffvelcdm 5736 . . . . . 6  |-  ( ( F : B --> C  /\  ( y  -  A
)  e.  B )  ->  ( F `  ( y  -  A
) )  e.  C
)
1512, 13, 14syl2an 289 . . . . 5  |-  ( ( ( F : B --> C  /\  A  e.  CC )  /\  ( y  e.  CC  /\  ( y  -  A )  e.  B ) )  -> 
( F `  (
y  -  A ) )  e.  C )
1611, 15eqeltrd 2284 . . . 4  |-  ( ( ( F : B --> C  /\  A  e.  CC )  /\  ( y  e.  CC  /\  ( y  -  A )  e.  B ) )  -> 
( ( F  shift  A ) `  y )  e.  C )
177, 16sylan2b 287 . . 3  |-  ( ( ( F : B --> C  /\  A  e.  CC )  /\  y  e.  {
x  e.  CC  | 
( x  -  A
)  e.  B }
)  ->  ( ( F  shift  A ) `  y )  e.  C
)
1817ralrimiva 2581 . 2  |-  ( ( F : B --> C  /\  A  e.  CC )  ->  A. y  e.  {
x  e.  CC  | 
( x  -  A
)  e.  B } 
( ( F  shift  A ) `  y )  e.  C )
19 ffnfv 5761 . 2  |-  ( ( F  shift  A ) : { x  e.  CC  |  ( x  -  A )  e.  B }
--> C  <->  ( ( F 
shift  A )  Fn  {
x  e.  CC  | 
( x  -  A
)  e.  B }  /\  A. y  e.  {
x  e.  CC  | 
( x  -  A
)  e.  B } 
( ( F  shift  A ) `  y )  e.  C ) )
204, 18, 19sylanbrc 417 1  |-  ( ( F : B --> C  /\  A  e.  CC )  ->  ( F  shift  A ) : { x  e.  CC  |  ( x  -  A )  e.  B } --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   A.wral 2486   {crab 2490   _Vcvv 2776    Fn wfn 5285   -->wf 5286   ` cfv 5290  (class class class)co 5967   CCcc 7958    - cmin 8278    shift cshi 11240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-resscn 8052  ax-1cn 8053  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-sub 8280  df-shft 11241
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator