| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > shftf | GIF version | ||
| Description: Functionality of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
| Ref | Expression |
|---|---|
| shftfval.1 | ⊢ 𝐹 ∈ V |
| Ref | Expression |
|---|---|
| shftf | ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5472 | . . 3 ⊢ (𝐹:𝐵⟶𝐶 → 𝐹 Fn 𝐵) | |
| 2 | shftfval.1 | . . . 4 ⊢ 𝐹 ∈ V | |
| 3 | 2 | shftfn 11330 | . . 3 ⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}) |
| 4 | 1, 3 | sylan 283 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}) |
| 5 | oveq1 6007 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 − 𝐴) = (𝑦 − 𝐴)) | |
| 6 | 5 | eleq1d 2298 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑥 − 𝐴) ∈ 𝐵 ↔ (𝑦 − 𝐴) ∈ 𝐵)) |
| 7 | 6 | elrab 2959 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵} ↔ (𝑦 ∈ ℂ ∧ (𝑦 − 𝐴) ∈ 𝐵)) |
| 8 | simpr 110 | . . . . . 6 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 9 | simpl 109 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ (𝑦 − 𝐴) ∈ 𝐵) → 𝑦 ∈ ℂ) | |
| 10 | 2 | shftval 11331 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝑦) = (𝐹‘(𝑦 − 𝐴))) |
| 11 | 8, 9, 10 | syl2an 289 | . . . . 5 ⊢ (((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝑦 − 𝐴) ∈ 𝐵)) → ((𝐹 shift 𝐴)‘𝑦) = (𝐹‘(𝑦 − 𝐴))) |
| 12 | simpl 109 | . . . . . 6 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → 𝐹:𝐵⟶𝐶) | |
| 13 | simpr 110 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ (𝑦 − 𝐴) ∈ 𝐵) → (𝑦 − 𝐴) ∈ 𝐵) | |
| 14 | ffvelcdm 5767 | . . . . . 6 ⊢ ((𝐹:𝐵⟶𝐶 ∧ (𝑦 − 𝐴) ∈ 𝐵) → (𝐹‘(𝑦 − 𝐴)) ∈ 𝐶) | |
| 15 | 12, 13, 14 | syl2an 289 | . . . . 5 ⊢ (((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝑦 − 𝐴) ∈ 𝐵)) → (𝐹‘(𝑦 − 𝐴)) ∈ 𝐶) |
| 16 | 11, 15 | eqeltrd 2306 | . . . 4 ⊢ (((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝑦 − 𝐴) ∈ 𝐵)) → ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶) |
| 17 | 7, 16 | sylan2b 287 | . . 3 ⊢ (((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) ∧ 𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}) → ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶) |
| 18 | 17 | ralrimiva 2603 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → ∀𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵} ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶) |
| 19 | ffnfv 5792 | . 2 ⊢ ((𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}⟶𝐶 ↔ ((𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵} ∧ ∀𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵} ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶)) | |
| 20 | 4, 18, 19 | sylanbrc 417 | 1 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}⟶𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∀wral 2508 {crab 2512 Vcvv 2799 Fn wfn 5312 ⟶wf 5313 ‘cfv 5317 (class class class)co 6000 ℂcc 7993 − cmin 8313 shift cshi 11320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-resscn 8087 ax-1cn 8088 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-sub 8315 df-shft 11321 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |