![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > shftf | GIF version |
Description: Functionality of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
Ref | Expression |
---|---|
shftfval.1 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
shftf | ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5361 | . . 3 ⊢ (𝐹:𝐵⟶𝐶 → 𝐹 Fn 𝐵) | |
2 | shftfval.1 | . . . 4 ⊢ 𝐹 ∈ V | |
3 | 2 | shftfn 10817 | . . 3 ⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}) |
4 | 1, 3 | sylan 283 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}) |
5 | oveq1 5876 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 − 𝐴) = (𝑦 − 𝐴)) | |
6 | 5 | eleq1d 2246 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑥 − 𝐴) ∈ 𝐵 ↔ (𝑦 − 𝐴) ∈ 𝐵)) |
7 | 6 | elrab 2893 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵} ↔ (𝑦 ∈ ℂ ∧ (𝑦 − 𝐴) ∈ 𝐵)) |
8 | simpr 110 | . . . . . 6 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ) | |
9 | simpl 109 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ (𝑦 − 𝐴) ∈ 𝐵) → 𝑦 ∈ ℂ) | |
10 | 2 | shftval 10818 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝑦) = (𝐹‘(𝑦 − 𝐴))) |
11 | 8, 9, 10 | syl2an 289 | . . . . 5 ⊢ (((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝑦 − 𝐴) ∈ 𝐵)) → ((𝐹 shift 𝐴)‘𝑦) = (𝐹‘(𝑦 − 𝐴))) |
12 | simpl 109 | . . . . . 6 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → 𝐹:𝐵⟶𝐶) | |
13 | simpr 110 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ (𝑦 − 𝐴) ∈ 𝐵) → (𝑦 − 𝐴) ∈ 𝐵) | |
14 | ffvelcdm 5645 | . . . . . 6 ⊢ ((𝐹:𝐵⟶𝐶 ∧ (𝑦 − 𝐴) ∈ 𝐵) → (𝐹‘(𝑦 − 𝐴)) ∈ 𝐶) | |
15 | 12, 13, 14 | syl2an 289 | . . . . 5 ⊢ (((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝑦 − 𝐴) ∈ 𝐵)) → (𝐹‘(𝑦 − 𝐴)) ∈ 𝐶) |
16 | 11, 15 | eqeltrd 2254 | . . . 4 ⊢ (((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝑦 − 𝐴) ∈ 𝐵)) → ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶) |
17 | 7, 16 | sylan2b 287 | . . 3 ⊢ (((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) ∧ 𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}) → ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶) |
18 | 17 | ralrimiva 2550 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → ∀𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵} ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶) |
19 | ffnfv 5670 | . 2 ⊢ ((𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}⟶𝐶 ↔ ((𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵} ∧ ∀𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵} ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶)) | |
20 | 4, 18, 19 | sylanbrc 417 | 1 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}⟶𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∀wral 2455 {crab 2459 Vcvv 2737 Fn wfn 5207 ⟶wf 5208 ‘cfv 5212 (class class class)co 5869 ℂcc 7800 − cmin 8118 shift cshi 10807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4115 ax-sep 4118 ax-pow 4171 ax-pr 4206 ax-un 4430 ax-setind 4533 ax-resscn 7894 ax-1cn 7895 ax-icn 7897 ax-addcl 7898 ax-addrcl 7899 ax-mulcl 7900 ax-addcom 7902 ax-addass 7904 ax-distr 7906 ax-i2m1 7907 ax-0id 7910 ax-rnegex 7911 ax-cnre 7913 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3576 df-sn 3597 df-pr 3598 df-op 3600 df-uni 3808 df-iun 3886 df-br 4001 df-opab 4062 df-mpt 4063 df-id 4290 df-xp 4629 df-rel 4630 df-cnv 4631 df-co 4632 df-dm 4633 df-rn 4634 df-res 4635 df-ima 4636 df-iota 5174 df-fun 5214 df-fn 5215 df-f 5216 df-f1 5217 df-fo 5218 df-f1o 5219 df-fv 5220 df-riota 5825 df-ov 5872 df-oprab 5873 df-mpo 5874 df-sub 8120 df-shft 10808 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |