ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  structiedg0val Unicode version

Theorem structiedg0val 15835
Description: The set of indexed edges of an extensible structure with a base set and another slot not being the slot for edge functions is empty. (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 12-Nov-2021.)
Hypotheses
Ref Expression
structvtxvallem.s  |-  S  e.  NN
structvtxvallem.b  |-  ( Base `  ndx )  <  S
structvtxvallem.g  |-  G  =  { <. ( Base `  ndx ) ,  V >. , 
<. S ,  E >. }
Assertion
Ref Expression
structiedg0val  |-  ( ( V  e.  X  /\  E  e.  Y  /\  S  =/=  (.ef `  ndx ) )  ->  (iEdg `  G )  =  (/) )

Proof of Theorem structiedg0val
StepHypRef Expression
1 structvtxvallem.g . . . . 5  |-  G  =  { <. ( Base `  ndx ) ,  V >. , 
<. S ,  E >. }
2 basendxnn 13083 . . . . . . 7  |-  ( Base `  ndx )  e.  NN
3 simpl 109 . . . . . . 7  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  V  e.  X )
4 opexg 4313 . . . . . . 7  |-  ( ( ( Base `  ndx )  e.  NN  /\  V  e.  X )  ->  <. ( Base `  ndx ) ,  V >.  e.  _V )
52, 3, 4sylancr 414 . . . . . 6  |-  ( ( V  e.  X  /\  E  e.  Y )  -> 
<. ( Base `  ndx ) ,  V >.  e. 
_V )
6 structvtxvallem.s . . . . . . 7  |-  S  e.  NN
7 simpr 110 . . . . . . 7  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  E  e.  Y )
8 opexg 4313 . . . . . . 7  |-  ( ( S  e.  NN  /\  E  e.  Y )  -> 
<. S ,  E >.  e. 
_V )
96, 7, 8sylancr 414 . . . . . 6  |-  ( ( V  e.  X  /\  E  e.  Y )  -> 
<. S ,  E >.  e. 
_V )
10 prexg 4294 . . . . . 6  |-  ( (
<. ( Base `  ndx ) ,  V >.  e. 
_V  /\  <. S ,  E >.  e.  _V )  ->  { <. ( Base `  ndx ) ,  V >. , 
<. S ,  E >. }  e.  _V )
115, 9, 10syl2anc 411 . . . . 5  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  { <. ( Base `  ndx ) ,  V >. , 
<. S ,  E >. }  e.  _V )
121, 11eqeltrid 2316 . . . 4  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  G  e.  _V )
13 structvtxvallem.b . . . . . 6  |-  ( Base `  ndx )  <  S
141, 13, 62strstrndx 13146 . . . . 5  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  G Struct  <. ( Base `  ndx ) ,  S >. )
15 structn0fun 13040 . . . . 5  |-  ( G Struct  <. ( Base `  ndx ) ,  S >.  ->  Fun  ( G  \  { (/)
} ) )
1614, 15syl 14 . . . 4  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  Fun  ( G  \  { (/) } ) )
176, 13, 1struct2slots2dom 15833 . . . 4  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  2o  ~<_  dom  G )
18 funiedgdm2domval 15825 . . . 4  |-  ( ( G  e.  _V  /\  Fun  ( G  \  { (/)
} )  /\  2o  ~<_  dom  G )  ->  (iEdg `  G )  =  (.ef
`  G ) )
1912, 16, 17, 18syl3anc 1271 . . 3  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  (iEdg `  G )  =  (.ef `  G )
)
20193adant3 1041 . 2  |-  ( ( V  e.  X  /\  E  e.  Y  /\  S  =/=  (.ef `  ndx ) )  ->  (iEdg `  G )  =  (.ef
`  G ) )
21 edgfndxid 15804 . . . 4  |-  ( G  e.  _V  ->  (.ef `  G )  =  ( G `  (.ef `  ndx ) ) )
2212, 21syl 14 . . 3  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  (.ef `  G )  =  ( G `  (.ef `  ndx ) ) )
23223adant3 1041 . 2  |-  ( ( V  e.  X  /\  E  e.  Y  /\  S  =/=  (.ef `  ndx ) )  ->  (.ef `  G )  =  ( G `  (.ef `  ndx ) ) )
24 edgfndxnn 15803 . . . 4  |-  (.ef `  ndx )  e.  NN
2524elexi 2812 . . 3  |-  (.ef `  ndx )  e.  _V
26 basendxnedgfndx 15806 . . . . . . . 8  |-  ( Base `  ndx )  =/=  (.ef ` 
ndx )
2726nesymi 2446 . . . . . . 7  |-  -.  (.ef ` 
ndx )  =  (
Base `  ndx )
2827a1i 9 . . . . . 6  |-  ( ( V  e.  X  /\  E  e.  Y  /\  S  =/=  (.ef `  ndx ) )  ->  -.  (.ef `  ndx )  =  ( Base `  ndx ) )
29 neneq 2422 . . . . . . . 8  |-  ( S  =/=  (.ef `  ndx )  ->  -.  S  =  (.ef `  ndx ) )
3029neqcomd 2234 . . . . . . 7  |-  ( S  =/=  (.ef `  ndx )  ->  -.  (.ef `  ndx )  =  S )
31303ad2ant3 1044 . . . . . 6  |-  ( ( V  e.  X  /\  E  e.  Y  /\  S  =/=  (.ef `  ndx ) )  ->  -.  (.ef `  ndx )  =  S )
32 ioran 757 . . . . . 6  |-  ( -.  ( (.ef `  ndx )  =  ( Base ` 
ndx )  \/  (.ef ` 
ndx )  =  S )  <->  ( -.  (.ef ` 
ndx )  =  (
Base `  ndx )  /\  -.  (.ef `  ndx )  =  S ) )
3328, 31, 32sylanbrc 417 . . . . 5  |-  ( ( V  e.  X  /\  E  e.  Y  /\  S  =/=  (.ef `  ndx ) )  ->  -.  ( (.ef `  ndx )  =  ( Base `  ndx )  \/  (.ef `  ndx )  =  S )
)
3425elpr 3687 . . . . 5  |-  ( (.ef
`  ndx )  e.  {
( Base `  ndx ) ,  S }  <->  ( (.ef ` 
ndx )  =  (
Base `  ndx )  \/  (.ef `  ndx )  =  S ) )
3533, 34sylnibr 681 . . . 4  |-  ( ( V  e.  X  /\  E  e.  Y  /\  S  =/=  (.ef `  ndx ) )  ->  -.  (.ef `  ndx )  e. 
{ ( Base `  ndx ) ,  S }
)
361dmeqi 4923 . . . . 5  |-  dom  G  =  dom  { <. ( Base `  ndx ) ,  V >. ,  <. S ,  E >. }
37 dmpropg 5200 . . . . . 6  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  dom  { <. ( Base `  ndx ) ,  V >. ,  <. S ,  E >. }  =  {
( Base `  ndx ) ,  S } )
38373adant3 1041 . . . . 5  |-  ( ( V  e.  X  /\  E  e.  Y  /\  S  =/=  (.ef `  ndx ) )  ->  dom  {
<. ( Base `  ndx ) ,  V >. , 
<. S ,  E >. }  =  { ( Base `  ndx ) ,  S } )
3936, 38eqtrid 2274 . . . 4  |-  ( ( V  e.  X  /\  E  e.  Y  /\  S  =/=  (.ef `  ndx ) )  ->  dom  G  =  { ( Base `  ndx ) ,  S } )
4035, 39neleqtrrd 2328 . . 3  |-  ( ( V  e.  X  /\  E  e.  Y  /\  S  =/=  (.ef `  ndx ) )  ->  -.  (.ef `  ndx )  e. 
dom  G )
41 ndmfvg 5657 . . 3  |-  ( ( (.ef `  ndx )  e. 
_V  /\  -.  (.ef ` 
ndx )  e.  dom  G )  ->  ( G `  (.ef `  ndx ) )  =  (/) )
4225, 40, 41sylancr 414 . 2  |-  ( ( V  e.  X  /\  E  e.  Y  /\  S  =/=  (.ef `  ndx ) )  ->  ( G `  (.ef `  ndx ) )  =  (/) )
4320, 23, 423eqtrd 2266 1  |-  ( ( V  e.  X  /\  E  e.  Y  /\  S  =/=  (.ef `  ndx ) )  ->  (iEdg `  G )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   _Vcvv 2799    \ cdif 3194   (/)c0 3491   {csn 3666   {cpr 3667   <.cop 3669   class class class wbr 4082   dom cdm 4718   Fun wfun 5311   ` cfv 5317   2oc2o 6554    ~<_ cdom 6884    < clt 8177   NNcn 9106   Struct cstr 13023   ndxcnx 13024   Basecbs 13027  .efcedgf 15799  iEdgciedg 15808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-2nd 6285  df-1o 6560  df-2o 6561  df-en 6886  df-dom 6887  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-9 9172  df-n0 9366  df-z 9443  df-dec 9575  df-uz 9719  df-fz 10201  df-struct 13029  df-ndx 13030  df-slot 13031  df-base 13033  df-edgf 15800  df-iedg 15810
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator